Home
Class 10
MATHS
Evaluate : (3tan25^(@)tan40^(@)tan50^(@...

Evaluate : `(3tan25^(@)tan40^(@)tan50^(@)tan65^(@)-(1)/(2)tan^(2)60^(@))/(4(cos^(2)29^(@)+cos^(2)61^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression: \[ \frac{3 \tan 25^\circ \tan 40^\circ \tan 50^\circ \tan 65^\circ - \frac{1}{2} \tan^2 60^\circ}{4(\cos^2 29^\circ + \cos^2 61^\circ)} \] we will follow these steps: ### Step 1: Simplify the tangent terms Using the identity \( \tan(90^\circ - \theta) = \cot(\theta) \), we can rewrite the tangent terms: - \( \tan 65^\circ = \cot 25^\circ \) - \( \tan 50^\circ = \cot 40^\circ \) Thus, we can rewrite the expression as: \[ 3 \tan 25^\circ \cot 25^\circ \tan 40^\circ \cot 40^\circ \] Since \( \tan \theta \cot \theta = 1 \), we have: \[ 3 \cdot 1 \cdot 1 = 3 \] So the numerator becomes: \[ 3 - \frac{1}{2} \tan^2 60^\circ \] ### Step 2: Calculate \( \tan 60^\circ \) We know that: \[ \tan 60^\circ = \sqrt{3} \] Thus, \( \tan^2 60^\circ = 3 \). Therefore, we substitute this into the numerator: \[ 3 - \frac{1}{2} \cdot 3 = 3 - \frac{3}{2} = \frac{6}{2} - \frac{3}{2} = \frac{3}{2} \] ### Step 3: Simplify the cosine terms Now, let's simplify the denominator: \[ 4(\cos^2 29^\circ + \cos^2 61^\circ) \] Using the identity \( \cos(90^\circ - \theta) = \sin(\theta) \), we have: \[ \cos 61^\circ = \sin 29^\circ \] Thus, we can rewrite the denominator as: \[ 4(\cos^2 29^\circ + \sin^2 29^\circ) \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ 4(1) = 4 \] ### Step 4: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{\frac{3}{2}}{4} = \frac{3}{2 \cdot 4} = \frac{3}{8} \] ### Final Answer Thus, the final answer is: \[ \frac{3}{8} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Evaluate : tan 25^(@) tan 65 ^(@) - cot 25^(@) cot 65^(@)

Evaluate: cos^(2)25^(@)-sin^(2)65^(@)-tan^(2)45^(@)

Prove that tan40^(@) + 2tan10^(@) = tan50^(@)

Evaluate : sin^(2)25^(@)+sin^(2)65^(@)+sqrt(3)tan5^(@)tan15^(@)tan30^(@)tan75^(@)tan85^(@)

Evaluate : tan[2tan^(-1)(1/2)-cot^(-1)3]

Prove that : ((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos30^(@))

Find the value of : tan^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@)

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

Verify that cos 60^(@)=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))