Home
Class 10
MATHS
Evaluate : (sec^(2)theta-cot^(2)(90^(@)-...

Evaluate : `(sec^(2)theta-cot^(2)(90^(@)-theta))/("cosec"^(2)67^(@)-tan^(2)23^(2))+(sin^(2)40^(@)+sin^(2)50^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{\sec^2 \theta - \cot^2 (90^\circ - \theta)}{\csc^2 67^\circ - \tan^2 23^\circ} + (\sin^2 40^\circ + \sin^2 50^\circ), \] we will simplify it step by step. ### Step 1: Simplify the numerator The numerator is \[ \sec^2 \theta - \cot^2 (90^\circ - \theta). \] Using the identity \(\cot(90^\circ - \theta) = \tan \theta\), we can rewrite this as: \[ \sec^2 \theta - \tan^2 \theta. \] ### Step 2: Use the identity We know from trigonometric identities that: \[ \sec^2 \theta - \tan^2 \theta = 1. \] So, the numerator simplifies to: \[ 1. \] ### Step 3: Simplify the denominator The denominator is \[ \csc^2 67^\circ - \tan^2 23^\circ. \] Using the identity \(\csc(90^\circ - \theta) = \sec \theta\), we can rewrite \(\csc^2 67^\circ\) as: \[ \sec^2 23^\circ. \] Thus, the denominator becomes: \[ \sec^2 23^\circ - \tan^2 23^\circ. \] ### Step 4: Use the identity again Using the identity \(\sec^2 \theta - \tan^2 \theta = 1\) again, we find that: \[ \sec^2 23^\circ - \tan^2 23^\circ = 1. \] ### Step 5: Combine the results Now substituting back into the expression, we have: \[ \frac{1}{1} + (\sin^2 40^\circ + \sin^2 50^\circ). \] ### Step 6: Simplify \(\sin^2 40^\circ + \sin^2 50^\circ\) Using the identity \(\sin(90^\circ - \theta) = \cos \theta\), we can write: \[ \sin^2 50^\circ = \cos^2 40^\circ. \] Thus, \[ \sin^2 40^\circ + \sin^2 50^\circ = \sin^2 40^\circ + \cos^2 40^\circ = 1. \] ### Step 7: Final calculation Now we can combine everything: \[ 1 + 1 = 2. \] Thus, the final answer is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that (sin^(2)theta+cos^(2)theta)/(sec^(2)theta-tan^(2)theta)=1

Find the value of sin^(2)theta*sec^(2)theta .

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

Without using trigonometric tables , evaluate the following : (cot(90^(@)-theta)*sin(90^(@)-theta))/(sintheta)+(cot40^(@))/(tan50^(@))-(cos^(2)20+cos^(2)70^(@))

Evaluate : |{:(1, cosec ^(2) theta, cot ^(2) theta),(-1 , cot ^(2) theta, cosec ^(2) theta),(2,(9)/(2), (5)/(2) ):}| a) -1 b) 1 c) 0 d) None of these

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

Evaluate : (cos^(2)(45^(@) + theta)+ cos^(2) (45^(@) -theta))/(tan(60^(@) + theta) xx tan(30^(@) - theta))+(cot30^(@) + sin 90^(@))xx (tan60^(@) -sec0^(@))

Show that : (cot(90^(@)-theta)*sin(90^(@)-theta))/(sintheta)+(cot50^(@))/(tan40^(@))=2

Evaluate : (sec 42^(@))/( cosec 48^(@)) + ( 3 tan 50 ^(@))/( cot 40 ^(@)) - ( 2 cos 43 ^(@))/( sin 47^(@))