Home
Class 10
MATHS
If sin2A=cos(A-12^(@))and2A is an acute ...

If `sin2A=cos(A-12^(@))and2A` is an acute angle , find the value of A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 2A = \cos(A - 12^\circ) \) given that \( 2A \) is an acute angle, we can follow these steps: ### Step 1: Use the identity for sine We know that \( \sin \theta = \cos(90^\circ - \theta) \). Therefore, we can rewrite \( \sin 2A \): \[ \sin 2A = \cos(90^\circ - 2A) \] So, we can set the equation as: \[ \cos(90^\circ - 2A) = \cos(A - 12^\circ) \] ### Step 2: Set the angles equal Since the cosine function is equal for angles that differ by \( 360^\circ \) or are supplementary, we can set the angles equal: \[ 90^\circ - 2A = A - 12^\circ \] ### Step 3: Rearrange the equation Now, we will rearrange the equation to isolate \( A \): \[ 90^\circ + 12^\circ = A + 2A \] This simplifies to: \[ 102^\circ = 3A \] ### Step 4: Solve for \( A \) Now, divide both sides by 3 to find \( A \): \[ A = \frac{102^\circ}{3} = 34^\circ \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{34^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sin3A=cos(A-26^@) , where 3A is an acute angle, find the value of A.

If sin3A=cos(A-26^@) , where 3A is an acute angle, find the value of A.

If tan A =cot (A-18^(@)) where 2A is an acute angle , find the value of A.

If tan2A=cot(A-18^0), where 2A is an acute angle, find the value of A.

If sin 3A =cos(A-10^(@)) where 3A is an acute angle , then find the value of A.

If tan2A=cot(A-18^0), where 2A is an acute angle, find the value of Adot

If 4cos^(2)x=3 and x is an acute angle, find the value of : x

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.