Home
Class 10
MATHS
If sintheta=(7)/(25),then find the value...

If `sintheta=(7)/(25)`,then find the value of `tan^(2)theta`.

A

`(7)/(24)`

B

`(49)/(576)`

C

`(1)/(2)`

D

`(49)/(625)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta = \frac{7}{25} \) and we need to find the value of \( \tan^2 \theta \), we can follow these steps: ### Step 1: Identify the components of the triangle Given that \( \sin \theta = \frac{7}{25} \), we can interpret this in terms of a right triangle where: - The opposite side (perpendicular) = 7 - The hypotenuse = 25 ### Step 2: Use Pythagorean theorem to find the base According to the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{perpendicular}^2 + \text{base}^2 \] Substituting the known values: \[ 25^2 = 7^2 + \text{base}^2 \] Calculating the squares: \[ 625 = 49 + \text{base}^2 \] Now, isolate \( \text{base}^2 \): \[ \text{base}^2 = 625 - 49 = 576 \] ### Step 3: Calculate the base Taking the square root of both sides: \[ \text{base} = \sqrt{576} = 24 \] ### Step 4: Find \( \tan \theta \) Now that we have the base, we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{perpendicular}}{\text{base}} = \frac{7}{24} \] ### Step 5: Calculate \( \tan^2 \theta \) Now, we need to find \( \tan^2 \theta \): \[ \tan^2 \theta = \left( \frac{7}{24} \right)^2 = \frac{49}{576} \] ### Final Answer Thus, the value of \( \tan^2 \theta \) is: \[ \frac{49}{576} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sintheta=(7)/(25) ,then find the value of sqrt((1-costheta)/(1+costheta)) .

If sintheta=(1)/(2) , then find the value of sin2theta

If sintheta=(3)/(4) ,then find the value of (2cos^(2)theta-3sin^(2)theta) .

If sin theta=(7)/(25) ,Find the value of cos theta

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

If "cosec"theta=sqrt(2) ,then find the value of (tan^(2)theta-1) .

If sintheta=(1)/(3) ,then find the value of sintheta*cos^(2)theta+"cosec"theta .

If sintheta=1/3 , then find the value of 2cot^2theta+2 .

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If sintheta=(12)/(13) , find the value of (sin^2theta-cos^2theta)/(2sinthetacostheta)xx1/(tan^2theta)