Home
Class 10
MATHS
Evaluate cos45^(@)cos30^(@)+sin45^(@)sin...

Evaluate `cos45^(@)cos30^(@)+sin45^(@)sin30^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \), we can follow these steps: ### Step 1: Identify the values of trigonometric functions We know the values of the trigonometric functions: - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \sin 45^\circ = \frac{1}{\sqrt{2}} \) - \( \sin 30^\circ = \frac{1}{2} \) ### Step 2: Substitute the values into the expression Now, substitute these values into the expression: \[ \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ = \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) \] ### Step 3: Simplify each term Calculate each term separately: 1. For \( \cos 45^\circ \cos 30^\circ \): \[ \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2\sqrt{2}} \] 2. For \( \sin 45^\circ \sin 30^\circ \): \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{2\sqrt{2}} \] ### Step 4: Combine the terms Now, add the two results together: \[ \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Final Result Thus, the value of the expression \( \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \) is: \[ \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin60^(@)cos30^(@)+cos60^(@)sin30^(@) .

Find the value of x, if : cos x = cos 60^(@) cos 30^(@) + sin 60^(@) sin 30^(@)

Find (in each case, given below) the value of x, if : cos x = cos 60^(@) cos 30^(@) - sin 60^(@) sin 30^(@)

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

Evaluate : (i) sin^(2)30^(@)-2cos^(3)60^(@)+3tan^(4)45^(@) (ii) (cos0^(@)+sin45^(@)+sin30^(@))(sin90^(@)-cos45^(@)+cos60^(@))

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

The valiue of sin60^(@) cos 30^(@) + sin 30^(@)cos 60^(@) is ______.

Evaluate (2tan45^@ xx cos 60^@)/sin30^@

Evaluate: (cos45)/(sec30+cosec30)