Home
Class 10
MATHS
Evaluate (tan60^(@)-tan30^(@))/(1+tan60^...

Evaluate `(tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\tan 60^\circ - \tan 30^\circ) / (1 + \tan 60^\circ \tan 30^\circ)\), we can follow these steps: ### Step 1: Identify the values of \(\tan 60^\circ\) and \(\tan 30^\circ\) We know from trigonometric ratios: \[ \tan 60^\circ = \sqrt{3} \] \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \] ### Step 2: Substitute the values into the expression Now, substituting these values into the expression: \[ \frac{\tan 60^\circ - \tan 30^\circ}{1 + \tan 60^\circ \tan 30^\circ} = \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}}} \] ### Step 3: Simplify the numerator To simplify the numerator, we need a common denominator: \[ \sqrt{3} - \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{3 - 1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \] ### Step 4: Simplify the denominator Now, simplifying the denominator: \[ 1 + \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 + 1 = 2 \] ### Step 5: Combine the results Now we can substitute back into the expression: \[ \frac{\frac{2}{\sqrt{3}}}{2} \] ### Step 6: Simplify the fraction This simplifies to: \[ \frac{2}{\sqrt{3}} \cdot \frac{1}{2} = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, the value of the expression is: \[ \frac{1}{\sqrt{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find (in each case, given below) the value of x, if : tan x = (tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@))

Evaluate : tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Evaluate : (3tan25^(@)tan40^(@)tan50^(@)tan65^(@)-(1)/(2)tan^(2)60^(@))/(4(cos^(2)29^(@)+cos^(2)61^(2)))

tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

Verify that sin60^(@)=(2tan 30^(@))/(1+tan^(2)30^(@))

Verify that cos 60^(@)=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))

Prove that: (a) tan 20^(@)tan40^(@)tan60^(@)tan 80^(@)=3 (b) tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@)=4

Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

Prove that : tan(2 times 30^(@))=(2tan30^(@))/(1-tan^(2)30^(@))