Home
Class 10
MATHS
Find the value of (1-sin^(2)A)(1+tan^(2)...

Find the value of `(1-sin^(2)A)(1+tan^(2)A)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (1 - \sin^2 A)(1 + \tan^2 A) \), we can follow these steps: ### Step 1: Rewrite the expression The given expression is: \[ (1 - \sin^2 A)(1 + \tan^2 A) \] ### Step 2: Use the Pythagorean identity We know from the Pythagorean identity that: \[ 1 - \sin^2 A = \cos^2 A \] So we can substitute this into our expression: \[ \cos^2 A (1 + \tan^2 A) \] ### Step 3: Use the identity for \( \tan^2 A \) Recall that: \[ 1 + \tan^2 A = \sec^2 A \] Thus, we can rewrite the expression as: \[ \cos^2 A \cdot \sec^2 A \] ### Step 4: Simplify the expression Since \( \sec A = \frac{1}{\cos A} \), we have: \[ \sec^2 A = \frac{1}{\cos^2 A} \] Therefore, substituting this in gives: \[ \cos^2 A \cdot \frac{1}{\cos^2 A} \] ### Step 5: Cancel the terms The \( \cos^2 A \) in the numerator and denominator cancels out: \[ 1 \] ### Conclusion Thus, the value of \( (1 - \sin^2 A)(1 + \tan^2 A) \) is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1-2sin^(2)30^(@)) .

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If cos 120^(@)=(-1)/(2) find the values of sin 120^(@) and tan 120^(@) .

Find the value of (tan^(2)37(1)/(2)^(@)+1)/(tan^(2)37(1)/(2)^(@)-1) .

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))