Home
Class 10
MATHS
Find the value of sin^(2)theta*sec^(2)th...

Find the value of `sin^(2)theta*sec^(2)theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^2 \theta \cdot \sec^2 \theta \), we can follow these steps: ### Step 1: Write the expression using the definition of secant We know that: \[ \sec \theta = \frac{1}{\cos \theta} \] Thus, we can write: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \] ### Step 2: Substitute secant into the expression Now, substituting \( \sec^2 \theta \) into the original expression gives us: \[ \sin^2 \theta \cdot \sec^2 \theta = \sin^2 \theta \cdot \frac{1}{\cos^2 \theta} \] ### Step 3: Simplify the expression This can be rewritten as: \[ \sin^2 \theta \cdot \sec^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] ### Step 4: Recognize the relationship with tangent We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] Thus, we can express our equation as: \[ \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta \] ### Conclusion Therefore, we conclude that: \[ \sin^2 \theta \cdot \sec^2 \theta = \tan^2 \theta \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sin theta+cosec theta=2 , then find the value of sin^(20)theta+cosec^(20)theta .

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

find the value sin^(2)theta*cosec theta =?

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 theta

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

If tantheta=1/(sqrt(7)) , find the value of (cos e c^2theta-sec^2theta)/(cos e c^2theta+sec^2theta) .

If tantheta=1/(sqrt(7)) , find the value of (cos e c^2theta-sec^2theta)/(cos e c^2theta+sec^2theta) .

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If theta is an acute angle and sintheta=costheta , find the value of 2tan^2theta+sin^2theta-1