Home
Class 10
MATHS
Find the value of (1-cos^(2)A)*"cosec"^(...

Find the value of `(1-cos^(2)A)*"cosec"^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (1 - \cos^2 A) \cdot \csc^2 A \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] From this, we can express \( 1 - \cos^2 A \) as: \[ 1 - \cos^2 A = \sin^2 A \] ### Step 2: Substitute in the Expression Now we can substitute \( 1 - \cos^2 A \) in our original expression: \[ (1 - \cos^2 A) \cdot \csc^2 A = \sin^2 A \cdot \csc^2 A \] ### Step 3: Recall the Definition of Cosecant The cosecant function is defined as: \[ \csc A = \frac{1}{\sin A} \] Thus, we have: \[ \csc^2 A = \frac{1}{\sin^2 A} \] ### Step 4: Substitute Cosecant into the Expression Now we can substitute \( \csc^2 A \) into our expression: \[ \sin^2 A \cdot \csc^2 A = \sin^2 A \cdot \frac{1}{\sin^2 A} \] ### Step 5: Simplify the Expression When we simplify this, we find: \[ \sin^2 A \cdot \frac{1}{\sin^2 A} = 1 \] ### Final Answer Thus, the value of \( (1 - \cos^2 A) \cdot \csc^2 A \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

If 3 cos A = 4 sin A, find the value of : 3 - cot^2A+ "cosec"^2A

If sin A + cosec A = 2, find the value of sin^2 A + "cosec"^2 A .

If cos 3x= 0 and x is acute find the value of : cot^(2) x- cosec ^(2)x

Evaluate int(1-cosx)"cosec"^(2)xdx

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

If cosec A = sqrt3 , find the value of: (2 sin ^(2)A + 3 cot ^(2) A)/( tan ^(2) A+ cos ^(2)A)

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)