Home
Class 10
MATHS
Find the value of ("cosec"^(2)A-1)*tan^(...

Find the value of `("cosec"^(2)A-1)*tan^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\csc^2 A - 1) \cdot \tan^2 A\), we can follow these steps: ### Step 1: Use the identity for \(\csc^2 A\) We know that: \[ \csc^2 A = 1 + \cot^2 A \] Thus, we can rewrite \(\csc^2 A - 1\) as: \[ \csc^2 A - 1 = \cot^2 A \] ### Step 2: Substitute \(\tan^2 A\) in terms of \(\sin A\) and \(\cos A\) We know that: \[ \tan A = \frac{\sin A}{\cos A} \] Therefore, \[ \tan^2 A = \frac{\sin^2 A}{\cos^2 A} \] ### Step 3: Substitute into the original expression Now, substituting the values we have: \[ (\csc^2 A - 1) \cdot \tan^2 A = \cot^2 A \cdot \tan^2 A \] ### Step 4: Express \(\cot^2 A\) in terms of \(\tan^2 A\) We know that: \[ \cot A = \frac{1}{\tan A} \] Thus, \[ \cot^2 A = \frac{1}{\tan^2 A} \] ### Step 5: Substitute \(\cot^2 A\) into the expression Now substituting \(\cot^2 A\): \[ \cot^2 A \cdot \tan^2 A = \frac{1}{\tan^2 A} \cdot \tan^2 A \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{\tan^2 A}{\tan^2 A} = 1 \] ### Final Answer Thus, the value of \((\csc^2 A - 1) \cdot \tan^2 A\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Find the value of (1-cos^(2)A)*"cosec"^(2)A .

If cosec A + sin A = 5(1)/5 , find the value of "cosec"^2 A+ sin^2A .

If sec 1.4=x, find the value of csc (2tan^(-1)x) .

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

Find the principal value of Cosec (2)