Home
Class 10
MATHS
Evaluate tan20^(@)tan25^(@)tan65^(@)tan7...

Evaluate `tan20^(@)tan25^(@)tan65^(@)tan70^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \tan 20^\circ \tan 25^\circ \tan 65^\circ \tan 70^\circ \), we can use the properties of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Group the terms We can rearrange the expression: \[ \tan 20^\circ \tan 70^\circ \tan 25^\circ \tan 65^\circ \] ### Step 2: Use the complementary angle identity Recall that: \[ \tan(90^\circ - \theta) = \cot \theta \] Using this identity, we can rewrite the terms: \[ \tan 70^\circ = \cot 20^\circ \quad \text{and} \quad \tan 65^\circ = \cot 25^\circ \] Thus, we can substitute: \[ \tan 20^\circ \tan 70^\circ = \tan 20^\circ \cot 20^\circ \] \[ \tan 25^\circ \tan 65^\circ = \tan 25^\circ \cot 25^\circ \] ### Step 3: Simplify using the identity Using the identity \( \tan \theta \cot \theta = 1 \): \[ \tan 20^\circ \cot 20^\circ = 1 \quad \text{and} \quad \tan 25^\circ \cot 25^\circ = 1 \] So we have: \[ \tan 20^\circ \tan 70^\circ \tan 25^\circ \tan 65^\circ = 1 \cdot 1 = 1 \] ### Conclusion Thus, the value of \( \tan 20^\circ \tan 25^\circ \tan 65^\circ \tan 70^\circ \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2

Evaluate : (3tan25^(@)tan40^(@)tan50^(@)tan65^(@)-(1)/(2)tan^(2)60^(@))/(4(cos^(2)29^(@)+cos^(2)61^(2)))

Evaluate tan^(-1)(tan128^(@))

Prove that: tan10^(@)tan50^(@)+tan50^(@)tan70^(@)+tan70^(@)tan170^(@)=3

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Evaluate without using trigonometric tables : tan 20^(@) tan 40^(@) tan 50^(@) tan 70^(@)

(tan8 0^(@)-tan1 0^(@))/tan70^(@)

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2