Home
Class 10
MATHS
Evaluate sin(30^(@)+theta)-cos(60^(@)-t...

Evaluate `sin(30^(@)+theta)-cos(60^(@)-theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin(30^\circ + \theta) - \cos(60^\circ - \theta) \), we can follow these steps: ### Step 1: Write down the expression We start with the expression: \[ \sin(30^\circ + \theta) - \cos(60^\circ - \theta) \] ### Step 2: Use the sine and cosine identities We know from trigonometric identities that: \[ \sin(30^\circ) = \frac{1}{2} \quad \text{and} \quad \cos(60^\circ) = \frac{1}{2} \] ### Step 3: Substitute the values Now, we can rewrite the expression using the sine and cosine addition formulas: \[ \sin(30^\circ + \theta) = \sin(30^\circ)\cos(\theta) + \cos(30^\circ)\sin(\theta) \] \[ \cos(60^\circ - \theta) = \cos(60^\circ)\cos(\theta) + \sin(60^\circ)\sin(\theta) \] ### Step 4: Substitute the known values Substituting the known values: \[ \sin(30^\circ + \theta) = \frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta) \] \[ \cos(60^\circ - \theta) = \frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta) \] ### Step 5: Substitute back into the expression Now substituting these back into our original expression: \[ \left(\frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta)\right) - \left(\frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta)\right) \] ### Step 6: Simplify the expression When we simplify this, we see that both terms are identical and will cancel each other out: \[ \frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta) - \frac{1}{2}\cos(\theta) - \frac{\sqrt{3}}{2}\sin(\theta) = 0 \] ### Final Answer Thus, the value of the expression \( \sin(30^\circ + \theta) - \cos(60^\circ - \theta) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If theta lies in the first quardrant and costheta=(8)/( 17 ) , then find the value of cos(30^(@)+theta)+cos(45^(@)-theta)+cos(120^(@)-theta) .

sin (60^(@) + theta) - sin ( 60^(@) - theta ) = sin theta.

Prove that sin theta sin(60^(@)-theta) sin(60^(@)+theta)=1/4 sin3theta .

Evaluate : (cos^2(45 + theta) + cos^2(45 - theta))/(tan(60^@ + theta) tan(30^@ - theta)) + cosec(75^@ + theta) - sec(15^@ - theta)

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

If cot theta=(4)/(3) , then find the value of sin theta,cos theta and cos ectheta in first quadrant. If sin theta+cos ec theta=2 then find the value of sin^(8 )theta+cos ec^(8)theta .

Evaluate : (cos^(2)(45^(@) + theta)+ cos^(2) (45^(@) -theta))/(tan(60^(@) + theta) xx tan(30^(@) - theta))+(cot30^(@) + sin 90^(@))xx (tan60^(@) -sec0^(@))

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

Prove that: sin(60^0-theta)cos(30^0+theta)+cos(60^0-theta)sin(30^0+theta)=1.

Find the value of sin60^(@)cos30^(@)+cos60^(@)sin30^(@) .