Home
Class 10
MATHS
Evaluate sinthetacos(90^(@)-theta)+costh...

Evaluate `sinthetacos(90^(@)-theta)+costhetasin(90^(@)-theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin \theta \cos(90^\circ - \theta) + \cos \theta \sin(90^\circ - \theta) \), we can follow these steps: ### Step 1: Use Trigonometric Identities We know from trigonometric identities that: - \( \cos(90^\circ - \theta) = \sin \theta \) - \( \sin(90^\circ - \theta) = \cos \theta \) ### Step 2: Substitute the Identities Substituting these identities into the expression gives us: \[ \sin \theta \cdot \sin \theta + \cos \theta \cdot \cos \theta \] ### Step 3: Simplify the Expression This simplifies to: \[ \sin^2 \theta + \cos^2 \theta \] ### Step 4: Apply the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] ### Final Result Thus, the value of the original expression is: \[ 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Prove that : (sinthetacos(90^0-theta)costheta)/(sin(90^0-theta))+(costhetasin(90^0-theta)sintheta)/(cos(90^0-theta))=1

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

Prove that sinthetacos(90^(@)-theta)=sin^(2)theta

Prove that : tantheta+tan(90^(@)-theta)=sectheta*sec(90^(@)-theta)

Evaluate: (secthetacos e c(90^0-theta)-tanthetacot(90^0-theta)+sin^2 55^0+sin^2 35^0)/(tan10^0tan20^0tan60^0tan70^0tan80^0)

Find the value of x: "cosec"(90^(@)+theta)+x costhetacot(90^(@)+theta)=sin(90^(@)+theta)

Without using trigonometric tables , evaluate the following : (cot(90^(@)-theta)*sin(90^(@)-theta))/(sintheta)+(cot40^(@))/(tan50^(@))-(cos^(2)20+cos^(2)70^(@))

Prove the following: sinthetasin(90^0-theta)-costhetacos(90^0-theta)=0

Prove the following: sinthetasin(90^0-theta)-costhetacos(90^0-theta)=0

Prove that (cos(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))