Home
Class 10
MATHS
If costheta=(8)/(17),verify that (3-4sin...

If `costheta=(8)/(17)`,verify that `(3-4sin^(2)theta)/(4cos^(2)theta-3)=(3-tan^(2)theta)/(1-3tan^(2)theta)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Prove that (3-4sin^(2)theta)/(cos^(2)theta)=3-tan^(2)theta

If secA=(17)/8 , verify that (3-4sin^2A)/(4cos^2A-3)=(3-tan^2A)/(1-3tan^2A)

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

If 3costheta=1 , find the value of (6sin^2theta+tan^2theta)/(4costheta)

If sectheta=(3)/(2) ,then find value of (2costheta-tan^(2)theta)/(sin^(2)theta+1) .

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is

Prove that ("sin"theta-2"sin"^(3)theta)/(2"cos"^(3)theta-"cos"theta)="tan"theta

NAGEEN PRAKASHAN ENGLISH-INTRODUCTION TO TRIGONOMETRY-Revision Exercise Short Answer Questions
  1. If "cosec"theta=2, show that (cottheta+(sintheta)/(1+costheta))=2.

    Text Solution

    |

  2. If sintheta=0.8,show that 5sintheta-3tantheta=0.

    Text Solution

    |

  3. If costheta=(8)/(17),verify that (3-4sin^(2)theta)/(4cos^(2)theta-3)=(...

    Text Solution

    |

  4. If sintheta=(3)/(5),verify that (tantheta)/(1+tan^(2)theta)=sinthetaco...

    Text Solution

    |

  5. If cottheta=(b)/(a),show that (asintheta-bcostheta)/(asintheta+bcosthe...

    Text Solution

    |

  6. find the value of sin60^@cos3 0^@+sin3 0^@cos6 0^@

    Text Solution

    |

  7. Verify that : sin 60^@ = 2 sin 30^@ cos 30^@

    Text Solution

    |

  8. If A=30^(@),verify that cos2A=cos^(2)A-sin^(2)A.

    Text Solution

    |

  9. if A= 45^o then verify sin2A=2sinAcosA , cos2A=1-sin^2A

    Text Solution

    |

  10. Using the formula cos A =sqrt((1+cos2A)/(2)), find the value of cos30^...

    Text Solution

    |

  11. In the adjoining figure , DeltaABC is a right - angled triangle , righ...

    Text Solution

    |

  12. If sin(A-B)=1/2,""""cos(A+B)=1/2, 0o<A+Blt=90o,""""A > B , find A and ...

    Text Solution

    |

  13. Find the value of sin30^(@) geometrically.

    Text Solution

    |

  14. Find the value of sin60^(@) geometrically.

    Text Solution

    |

  15. Prove that sqrt(sec^(2)theta + cosec^(2)theta) = tantheta + cottheta.

    Text Solution

    |

  16. Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

    Text Solution

    |

  17. sqrt((1+sintheta)/(1-sintheta))+sqrt((1-sintheta)/(1+sintheta)) is equ...

    Text Solution

    |

  18. Prove that : tan^(2)theta-sin^(2)theta=tan^(2)thetasin^(2)theta

    Text Solution

    |

  19. Prove that : (tanA+sinA)/(tanA-sinA)=(secA+1)/(secA-1)

    Text Solution

    |

  20. Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

    Text Solution

    |