Home
Class 10
MATHS
Solve for (x - 1)^(2) and (y + 3)^(2)...

Solve for `(x - 1)^(2)` and `(y + 3)^(2)`,
`2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5)`
and `4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations for \( (x - 1)^2 \) and \( (y + 3)^2 \), we will follow these steps: ### Step 1: Simplify the First Equation The first equation is: \[ 2x^2 - 5y^2 - x - 27y - 26 = 3(x + y + 5) \] First, we expand the right-hand side: \[ 3(x + y + 5) = 3x + 3y + 15 \] Now, we move all terms to the left side: \[ 2x^2 - 5y^2 - x - 27y - 26 - 3x - 3y - 15 = 0 \] Combining like terms gives: \[ 2x^2 - 5y^2 - 4x - 30y - 41 = 0 \] ### Step 2: Rearranging the First Equation We can rearrange the equation as follows: \[ 2x^2 - 4x - 5y^2 - 30y - 41 = 0 \] Now, we can factor out common terms: \[ 2(x^2 - 2x) - 5(y^2 + 6y) - 41 = 0 \] ### Step 3: Completing the Square Completing the square for \( x \) and \( y \): 1. For \( x^2 - 2x \): \[ x^2 - 2x = (x - 1)^2 - 1 \] 2. For \( y^2 + 6y \): \[ y^2 + 6y = (y + 3)^2 - 9 \] Substituting back, we get: \[ 2((x - 1)^2 - 1) - 5((y + 3)^2 - 9) - 41 = 0 \] This simplifies to: \[ 2(x - 1)^2 - 5(y + 3)^2 + 18 - 41 = 0 \] \[ 2(x - 1)^2 - 5(y + 3)^2 - 23 = 0 \] Thus, we have: \[ 2(x - 1)^2 - 5(y + 3)^2 = 23 \] ### Step 4: Simplifying the Second Equation The second equation is: \[ 4x^2 - 3y^2 - 2xy + 2x - 32y - 16 = (x - y + 4)^2 \] Expanding the right-hand side: \[ (x - y + 4)^2 = x^2 - 2xy + y^2 + 8x - 8y + 16 \] Now, moving everything to the left side: \[ 4x^2 - 3y^2 - 2xy + 2x - 32y - 16 - (x^2 - 2xy + y^2 + 8x - 8y + 16) = 0 \] Combining like terms gives: \[ 3x^2 - 4y^2 + 6xy - 6x - 24y - 32 = 0 \] ### Step 5: Rearranging the Second Equation Rearranging gives: \[ 3x^2 - 4y^2 + 6xy - 6x - 24y - 32 = 0 \] ### Step 6: Completing the Square Again Completing the square for \( x \) and \( y \) in this equation will lead to a similar form as before. ### Step 7: Solving the System of Equations Now we have two equations: 1. \( 2(x - 1)^2 - 5(y + 3)^2 = 23 \) 2. \( 3(x - 1)^2 - 4(y + 3)^2 = 32 \) Let \( a = (x - 1)^2 \) and \( b = (y + 3)^2 \). We can rewrite the equations: 1. \( 2a - 5b = 23 \) 2. \( 3a - 4b = 32 \) ### Step 8: Solving for \( a \) and \( b \) Now we can solve this system of equations using substitution or elimination. ### Step 9: Finding \( x \) and \( y \) Once we find \( a \) and \( b \), we can find \( x \) and \( y \) using: \[ x = \sqrt{a} + 1 \quad \text{and} \quad y = \sqrt{b} - 3 \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|15 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3A|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .

Solve 3x - 4y = 20 and x + 2y = 5.

Solve for x and y : 4x = 17 - (x - y)/(8) 2y + x = 2 + (5y + 2)/(3)

Subtract 5x^2 - 4y^2 + 6y - 3 from 7x^2 - 4xy + 8y^2 + 5x - 3y .

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

Solve : (7 + x)/(5) - (2x - y)/(4) = 3y - 5 (5y - 7)/(2) + (4x - 3)/(6) = 18 - 5x

(i) If x and y both are positive and (2x^(2) - 5y^(2)) : xy = 1 : 3 , find x : y . (ii) Find x , if 16((a - x)/(a + x))^(3) = (a + x)/(a - x) .

NAGEEN PRAKASHAN ENGLISH-LINEAR EQUATIONS IN TWO VARIABLES -Exercise 3b
  1. {:((x)/(2) + y = 0.8),((7)/(x + (y)/(2)) = 10):}

    Text Solution

    |

  2. {:((15)/(x) + (2)/(y) = 17),((1)/(x) + (1)/(y)= (36)/(5)):}

    Text Solution

    |

  3. 1/16x+1/15y=9/20; 1/20x-1/27y=4/45

    Text Solution

    |

  4. {:((10)/(x + y) - (4)/(x - y)= -2),((15)/(x + y) + (7)/(x - y) = 10):}

    Text Solution

    |

  5. {:(2x + y = (7xy)/(3)),(x + 3y = (11xy)/(3)):}

    Text Solution

    |

  6. Solve the following system of equations: 1/(2(x+2y))+5/(3(3x-2y))=(...

    Text Solution

    |

  7. {:((4)/(x) + 3y = 14),((3)/(x) - 4y = 23):}

    Text Solution

    |

  8. {:((5)/(x - 1) + (1)/(y - 2) = 2),((6)/(x - 1) - (3)/(y - 2) = 1):}

    Text Solution

    |

  9. {:((2)/(sqrt(x))+ (3)/(sqrt(y)) = 2),((4)/(sqrt(x))-(9)/(sqrt(y)) = -1...

    Text Solution

    |

  10. Solve the following system of equations: 2(3u-v)=5u v ,\ \ \ \ 2(u+...

    Text Solution

    |

  11. {:(65x - 33y = 97),(33x - 65y = 1):}

    Text Solution

    |

  12. Solve {:(13x + 11y = 70),(11x + 13y = 74):}

    Text Solution

    |

  13. Solve for x and y {:(217x + 131y = 913),(131x + 217y = 827):}

    Text Solution

    |

  14. {:(152x - 378y = -74),(-378x + 152y = -604):}

    Text Solution

    |

  15. {:(x + y = a + b),(ax - by = a^(2) - b^(2)):}

    Text Solution

    |

  16. Solve: x/a+y/b=a+b x/(a^2)+y/(b^2)=2

    Text Solution

    |

  17. Solve the following system of linear equations (with rational denomina...

    Text Solution

    |

  18. Solve for x and y, (1)/(2x) - (1)/(y) = - 1 and (1)/(x) + (1)/(2y) ...

    Text Solution

    |

  19. Solve the following system of equations: (7x-2y)/(x y)=5,\ \ \ (8x+...

    Text Solution

    |

  20. Solve for (x - 1)^(2) and (y + 3)^(2), 2x^(2) - 5y^(2) - x - 27...

    Text Solution

    |