Home
Class 10
MATHS
Solve: a x+b y=c ,\ \ \ \ b x+a y=1+c...

Solve: `a x+b y=c ,\ \ \ \ b x+a y=1+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( ax + by = c \) (Equation 1) 2. \( bx + ay = 1 + c \) (Equation 2) we will follow these steps: ### Step 1: Multiply the equations We will multiply Equation 1 by \( a \) and Equation 2 by \( b \). - Multiplying Equation 1 by \( a \): \[ a(ax + by) = ac \implies a^2x + aby = ac \quad \text{(Equation 3)} \] - Multiplying Equation 2 by \( b \): \[ b(bx + ay) = b(1 + c) \implies b^2x + aby = b + bc \quad \text{(Equation 4)} \] ### Step 2: Subtract Equation 3 from Equation 4 Now, we will subtract Equation 3 from Equation 4: \[ (b^2x + aby) - (a^2x + aby) = (b + bc) - ac \] This simplifies to: \[ (b^2 - a^2)x = b + bc - ac \] ### Step 3: Solve for \( x \) Now, we can isolate \( x \): \[ x = \frac{b + bc - ac}{b^2 - a^2} \] ### Step 4: Substitute \( x \) back into Equation 1 Now we will substitute the value of \( x \) back into Equation 1 to find \( y \): \[ a\left(\frac{b + bc - ac}{b^2 - a^2}\right) + by = c \] ### Step 5: Simplify the equation for \( y \) Rearranging gives: \[ by = c - a\left(\frac{b + bc - ac}{b^2 - a^2}\right) \] Now, we will simplify this expression: \[ by = c - \frac{a(b + bc - ac)}{b^2 - a^2} \] ### Step 6: Solve for \( y \) To isolate \( y \), we divide both sides by \( b \): \[ y = \frac{c - \frac{a(b + bc - ac)}{b^2 - a^2}}{b} \] ### Final Values Thus, we have: \[ x = \frac{b + bc - ac}{b^2 - a^2} \] \[ y = \frac{c - \frac{a(b + bc - ac)}{b^2 - a^2}}{b} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|56 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve: a x+b y=a-b ,\ \ \ \ b x-a y=a+b

Solve the following system of equations by method of cross-multiplication: x+a y=b ,\ \ \ \ a x-b y=c

Solve the following system of equations by method of cross-multiplication: b x+c y=a+b ,\ \ \ \ and a x(1/(a-b)-1/(a+b))+c y(1/(b-a)-1/(b+a))=(2a)/(a+b) .

Prove that: |a b a x+b y b c b x+c y a x+b y b x+c y0|=(b^2-a c)(a x^2+2b x y+c y^2) .

Prove that |[a x-b y-c z, a y+b x, c x+a z], [a y+b x, b y-c z-a x, b z+c y],[c x+a z, b z+c y, c z-a x-b y]|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot

Let a ,b ,c be real numbers with a^2+b^2+c^2=1. Show that the equation |a x-b y-c b x-a y c x+a b x+a y-a x+b y-cc y+b c x+a c y+b-a x-b y+c|=0 represents a straight line.

If x+y+z=0 prove that |[a x, b y, c z],[ c y, a z ,b x],[ b z ,c x ,a y]|=x y z|[a, b, c],[c ,a ,b],[b ,c ,a]|

Solve: x+y=a+b ; a x-b y=a^2-b^2

Factorize: a x+b x+a y+b y , a x^2+b y^2+b x^2+a y^2 , a^2+b c+a b+a c , a x-a y+b x-b y