Home
Class 10
MATHS
{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2...

`{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations: 1. **Equations**: \[ \frac{a^2}{x} - \frac{b^2}{y} = 0 \] \[ \frac{a^2 b}{x} + \frac{b^2 a}{y} = a + b \] 2. **Rearranging the first equation**: From the first equation, we can rearrange it to express one variable in terms of the other: \[ \frac{a^2}{x} = \frac{b^2}{y} \] Cross-multiplying gives: \[ a^2 y = b^2 x \] Thus, \[ \frac{1}{x} = \frac{b^2}{a^2 y} \] 3. **Substituting**: Let \( u = \frac{1}{x} \) and \( v = \frac{1}{y} \). Hence, we can rewrite the first equation as: \[ a^2 u = b^2 v \quad \text{(1)} \] 4. **Rearranging the second equation**: Substitute \( u \) and \( v \) into the second equation: \[ \frac{a^2 b}{x} + \frac{b^2 a}{y} = a + b \] This becomes: \[ a^2 b u + b^2 a v = a + b \] 5. **Substituting for \( u \)**: From equation (1), we have \( u = \frac{b^2 v}{a^2} \). Substitute this into the second equation: \[ a^2 b \left(\frac{b^2 v}{a^2}\right) + b^2 a v = a + b \] Simplifying gives: \[ b^3 v + b^2 a v = a + b \] Factoring out \( v \): \[ v(b^3 + b^2 a) = a + b \] 6. **Solving for \( v \)**: Thus, \[ v = \frac{a + b}{b^2 (b + a)} \] The \( a + b \) terms cancel out: \[ v = \frac{1}{b^2} \] 7. **Finding \( u \)**: Substitute \( v \) back into the expression for \( u \): \[ u = \frac{b^2 v}{a^2} = \frac{b^2 \cdot \frac{1}{b^2}}{a^2} = \frac{1}{a^2} \] 8. **Finding \( x \) and \( y \)**: Since \( u = \frac{1}{x} \) and \( v = \frac{1}{y} \): \[ \frac{1}{x} = \frac{1}{a^2} \implies x = a^2 \] \[ \frac{1}{y} = \frac{1}{b^2} \implies y = b^2 \] 9. **Final Answers**: Therefore, the solutions are: \[ x = a^2, \quad y = b^2 \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|56 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve : {:((a)/(x)-(b)/(y)=0),((ab^(2))/(x)+(a^(2)b)/(y)=a^(2)+b^(2)):}

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Find the angle between the lines , (a^(2) - ab) y = (ab+b^(2))x+b^(3) , and (ab+b^(2)) y = (ab-a^2)x+a^(3) where a lt b lt 0

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C are in

Solve the following system of equations by method of cross-multiplication: (a^2)/x-(b^2)/y=0,\ \ \ (a^2b)/x+(b^2a)/y=a+b ,\ \ \ \ x ,\ y!=0

STATEMENT-1 : The line y = (b)/(a)x will not meet the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1, (a gt b gt 0) . and STATEMENT-2 : The line y = (b)/(a)x is an asymptote to the hyperbola.

Solve the following system of equations in x and y : a/x-b/y=0,\ \ \ \ (a b^2)/x+(a^2b)/y=a^2+b^2 , where x ,\ y!=0 .

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)