Home
Class 10
MATHS
(a-b)x+ (a+b)y=a^2-2ab-b^2 , (a+b)(x...

`(a-b)x+ (a+b)y=a^2-2ab-b^2` , `(a+b)(x+y)=a^2+b^2 ` find x and y

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations for \( x \) and \( y \): 1. **Write down the equations:** \[ (a-b)x + (a+b)y = a^2 - 2ab - b^2 \quad \text{(Equation 1)} \] \[ (a+b)(x+y) = a^2 + b^2 \quad \text{(Equation 2)} \] 2. **Expand Equation 2:** \[ (a+b)x + (a+b)y = a^2 + b^2 \] This can be rewritten as: \[ (a+b)x + (a+b)y = a^2 + b^2 \quad \text{(Equation 2)} \] 3. **Subtract Equation 2 from Equation 1:** \[ [(a-b)x + (a+b)y] - [(a+b)x + (a+b)y] = (a^2 - 2ab - b^2) - (a^2 + b^2) \] Simplifying the left side: \[ (a-b)x - (a+b)x + (a+b)y - (a+b)y = (a^2 - 2ab - b^2) - (a^2 + b^2) \] This simplifies to: \[ (a-b - (a+b))x = -2ab - 2b^2 \] Which further simplifies to: \[ (-2b)x = -2ab - 2b^2 \] 4. **Solve for \( x \):** \[ x = \frac{-2ab - 2b^2}{-2b} = \frac{2(ab + b^2)}{2b} = \frac{ab + b^2}{b} = a + b \] 5. **Substitute \( x \) back into Equation 1 to find \( y \):** Substitute \( x = a + b \) into Equation 1: \[ (a-b)(a+b) + (a+b)y = a^2 - 2ab - b^2 \] Calculate \( (a-b)(a+b) \): \[ a^2 - b^2 + (a+b)y = a^2 - 2ab - b^2 \] Simplifying gives: \[ (a+b)y = -2ab \] 6. **Solve for \( y \):** \[ y = \frac{-2ab}{a+b} \] 7. **Final results:** \[ x = a + b \] \[ y = \frac{-2ab}{a+b} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|56 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab and (a + b) (x + y) = a ^2+ b^2

x+y=a+b , a x-b y=a^2-b^2

Solve the following system of equations in x and y (a-b)x+(a+b)y=a^2-2a b-b^2,\ \ \ \ (a+b)(x+y)=a^2+b^2

x/a-y/b=0 , a x+b y=a^2+b^2

Solve : a(x+y)+b(x-y)=a^2-a b+b^2 , a(x+y)-b(x-y)=a^2+a b-b^2

. The lines (a+b)x + (a-b) y-2ab=0, (a-b)x+(a+b)y-2ab = 0 and x+y=0 form an isosceles triangle whose vertical angle is

. The lines (a+b)x + (a-b) y-2ab=0, (a-b)x+(a+b)y-2ab = 0 and x+y=0 form an isosceles triangle whose vertical angle is

The locus of the midpoints of the chords of the circle x^2+y^2-a x-b y=0 which subtend a right angle at (a/2, b/2) is (a) a x+b y=0 (b) a x+b y=a^2+b^2 (c) x^2+y^2-a x-b y+(a^2+b^2)/8=0 (d) x^2+y^2-a x-b y-(a^2+b^2)/8=0

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b