Home
Class 9
MATHS
If a, b, c are all non-zero and a+b+c=0,...

If `a`, `b`, `c` are all non-zero and `a+b+c=0`, then `(a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ?`.

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition: **Given:** \[ a + b + c = 0 \] We need to find the value of: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \] ### Step 1: Use the identity for cubes We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Since we know \( a + b + c = 0 \), we can simplify the identity: \[ a^3 + b^3 + c^3 - 3abc = 0 \] This implies: \[ a^3 + b^3 + c^3 = 3abc \] ### Step 2: Divide by \( abc \) Now, we divide both sides of the equation by \( abc \): \[ \frac{a^3}{abc} + \frac{b^3}{abc} + \frac{c^3}{abc} = 3 \] ### Step 3: Simplify the fractions This simplifies to: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \] ### Conclusion Thus, we have found that: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \] ### Final Answer The value is: \[ \boxed{3} \] ---

To solve the problem, we start with the given condition: **Given:** \[ a + b + c = 0 \] We need to find the value of: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \] ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|8 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2b|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

if a,and c are all non zero and a+b+c=0 , then prove that (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3.

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Let agt0, bgt0, cgt0 and a+b+c=6 then ((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2)) may be

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab) is defined. What is the value of P.

If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) always belongs to

If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) always belongs to

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If a,b,c are unequal and positive then show that (bc)/(b+c)+(ca)/(c+a)+(ab)/(a+b)<1/2(a+b+c)

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

NAGEEN PRAKASHAN ENGLISH-POLYNOMIALS-Problems From NCERT/exemplar
  1. Find the value of the polynomial 5x-4x^(2)+3 at : (i)x=0 " " ...

    Text Solution

    |

  2. Find the remainder when x^(3)+3x^(2)+3x+1 is divided by : (i) x+1 " ...

    Text Solution

    |

  3. Find the remainder when x^3-a x^2+6x-ais divided by x-a.

    Text Solution

    |

  4. Find the value of k, if x-1 is a factor of p(x) in each of the followi...

    Text Solution

    |

  5. Factorise the following using appropriate identities : (i) 9x^(2)+6x...

    Text Solution

    |

  6. Give possible expressions for the length and breath of each of the fol...

    Text Solution

    |

  7. What are the possible expressions for the dimensions of the cuboids w...

    Text Solution

    |

  8. Factorise the following : (i) 4x^(2)+20x+25 " " (ii) ...

    Text Solution

    |

  9. Factorize : (x-2y)^3+(2y-3z)^3+(3z-x)^3

    Text Solution

    |

  10. Find the value of : (i) x^(3)+y^(3)-12xy+64, when x+y=-4 (ii) x^(3...

    Text Solution

    |

  11. Factorise the following (i) 9x^(2)+4y^(2)+16z^(2)+12xy-16yz-24xz ...

    Text Solution

    |

  12. Without actual division, prove that 2x^(4)-5x^(3)+2x^(2)-x+2 is divisi...

    Text Solution

    |

  13. Simplify (2x-5y)^(3)-(2x+5y)^(3).

    Text Solution

    |

  14. Multiply x^(2)+4y^(2)+z^(2)+2xy+xz-2yz by (-z+x-2y)

    Text Solution

    |

  15. If a, b, c are all non-zero and a+b+c=0, then (a^(2))/(bc)+(b^(2))/(ca...

    Text Solution

    |

  16. Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a).

    Text Solution

    |

  17. If a+b+c=5 and ab+bc+ca=10, then prove that a^(3)+b^(3)+c^(3)-3abc=-25...

    Text Solution

    |

  18. The polynomial p(x)=x^(4)-2x^(3)-ax+3a-7 when divided by x+1 leaves re...

    Text Solution

    |