Home
Class 11
MATHS
If the focus of a parabola is (3,3) and ...

If the focus of a parabola is `(3,3)` and its directrix is `3x-4y=2` then the length of its latus rectum is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11.1|15 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11.2|12 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11F|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos

Similar Questions

Explore conceptually related problems

If the focus of a parabola is (0,-3) and its directrix is y=3, then its equation is

Find the coordinates of the point of intersection of the axis and the directrix of the parabola whose focus is (3,3) and directrix is 3x-4y=2. Find also the length of the latus rectum.

Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum. y^2=10 x

Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum. x^2=6y

Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum. x^2=-9y

Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum. y^2=-8x

Find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum. x^2=-16 y

If the focus of a parabola is (2, 3) and its latus rectum is 8, then find the locus of the vertex of the parabola.

If the focus of a parabola is (2, 3) and its latus rectum is 8, then find the locus of the vertex of the parabola.

If the parabola y^(2) = 4ax passes through the point (3,2) , then the length of its latus rectum is