Home
Class 11
MATHS
Differentiate wrt x : (tan x+secx)(cosec...

Differentiate wrt `x` : `(tan x+secx)(cosecx+cot x)`

A

`(sec x+cotx)(sec x+tanx)(sec x-cosecx)`

B

`(cosec x+cotx)(sec x+tanx)(sec x+cosecx)`

C

`(cosec x-cotx)(sec x+tanx)(sec x-cosecx)`

D

`(cosec x+cotx)(sec x+tanx)(sec x-cosecx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = ( \tan x + \sec x )( \csc x + \cot x ) \) with respect to \( x \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx} \] ### Step-by-step Solution: 1. **Identify the Functions**: Let \( u = \tan x + \sec x \) and \( v = \csc x + \cot x \). 2. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(\tan x) + \frac{d}{dx}(\sec x) \] Using the derivatives \( \frac{d}{dx}(\tan x) = \sec^2 x \) and \( \frac{d}{dx}(\sec x) = \sec x \tan x \): \[ \frac{du}{dx} = \sec^2 x + \sec x \tan x \] 3. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(\csc x) + \frac{d}{dx}(\cot x) \] Using the derivatives \( \frac{d}{dx}(\csc x) = -\csc x \cot x \) and \( \frac{d}{dx}(\cot x) = -\csc^2 x \): \[ \frac{dv}{dx} = -\csc x \cot x - \csc^2 x \] 4. **Apply the Product Rule**: Now, applying the product rule: \[ \frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = (\csc x + \cot x)(\sec^2 x + \sec x \tan x) + (\tan x + \sec x)(-\csc x \cot x - \csc^2 x) \] 5. **Simplify the Expression**: Expanding both terms: \[ \frac{dy}{dx} = (\csc x + \cot x)(\sec^2 x + \sec x \tan x) - (\tan x + \sec x)(\csc x \cot x + \csc^2 x) \] 6. **Factor Common Terms**: Look for common factors in the expression. We can factor out \( \csc x \cot x \) from the second term and simplify further if possible. 7. **Final Result**: After simplification, we arrive at the final expression for the derivative: \[ \frac{dy}{dx} = (\csc x + \cot x)(\sec^2 x + \sec x \tan x) - (\tan x + \sec x)(\csc x \cot x + \csc^2 x) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13F|20 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13G|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13D|25 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x tan (x^2)

Differentiate wrt x : cos x*cot x

Differentiate wrt x : x^(3)*sec x

Differentiate wrt x : (xtanx)/(sec x+tanx)

Differentiate w.r.t x e^(5x)

Differentiate wrt x : x^(2)*cos x .

Differentiate wrt x : k*sin x*log x

Differentiate wrt x : (x+sinx)(x-cotx)

Differentiate wrt x : (x-1)(x+2)e^(x)

Differentiate wrt x : (x+1)(2x-3)