Home
Class 11
MATHS
If G(x)=-sqrt(25-x^(2)), then lim(xrarr1...

If `G(x)=-sqrt(25-x^(2))`, then `lim_(xrarr1) (G(x)-G(1))/(x-1)=?`

A

`-(1)/sqrt(24)`

B

`-sqrt(24)`

C

`sqrt(24)`

D

`(1)/sqrt(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \( G(x) = -\sqrt{25 - x^2} \), we need to find \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1}. \] ### Step 1: Calculate \( G(1) \) First, we need to find \( G(1) \): \[ G(1) = -\sqrt{25 - 1^2} = -\sqrt{25 - 1} = -\sqrt{24}. \] ### Step 2: Substitute \( G(x) \) and \( G(1) \) into the limit expression Now we substitute \( G(x) \) and \( G(1) \) into the limit expression: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to 1} \frac{-\sqrt{25 - x^2} + \sqrt{24}}{x - 1}. \] ### Step 3: Simplify the expression This can be rewritten as: \[ \lim_{x \to 1} \frac{\sqrt{24} - \sqrt{25 - x^2}}{x - 1}. \] ### Step 4: Check for indeterminate form Now, if we substitute \( x = 1 \) directly into the expression, we get: \[ \frac{\sqrt{24} - \sqrt{24}}{1 - 1} = \frac{0}{0}, \] which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule. ### Step 5: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: 1. **Differentiate the numerator**: The derivative of \( \sqrt{24} - \sqrt{25 - x^2} \) is: \[ 0 - \frac{1}{2\sqrt{25 - x^2}} \cdot (-2x) = \frac{x}{\sqrt{25 - x^2}}. \] 2. **Differentiate the denominator**: The derivative of \( x - 1 \) is: \[ 1. \] Now we can rewrite the limit as: \[ \lim_{x \to 1} \frac{\frac{x}{\sqrt{25 - x^2}}}{1} = \lim_{x \to 1} \frac{x}{\sqrt{25 - x^2}}. \] ### Step 6: Evaluate the limit Substituting \( x = 1 \): \[ \frac{1}{\sqrt{25 - 1^2}} = \frac{1}{\sqrt{24}} = \frac{1}{2\sqrt{6}}. \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \frac{1}{\sqrt{24}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.1|32 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13G|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

If G(x)=-sqrt(25-x^2),t h e n lim_(x->1)(G(x)-G(1))/(x-1)i s (a) 1/(24) (b) 1/5 (c) -sqrt(24) (d) none of these

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr1)(sqrt1-cos2(x-1))/(x-1) , is

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?