Home
Class 12
MATHS
Find the principal values of the follow...

Find the principal values of the following :
(i) `sin^(-1)(sin.(5pi)/(3))` (ii) `cos^(-1)cos((4pi)/(3))` (iii) ` cos [(pi)/(3) + cos^(-1) (-(1)/(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problem step by step. ### Question: Find the principal values of the following: 1. \( \sin^{-1}(\sin(5\pi/3)) \) 2. \( \cos^{-1}(\cos(4\pi/3)) \) 3. \( \cos\left(\frac{\pi}{3} + \cos^{-1}\left(-\frac{1}{2}\right)\right) \) ### Step-by-Step Solution: #### Part (i): \( \sin^{-1}(\sin(5\pi/3)) \) 1. **Identify the angle**: We start with \( 5\pi/3 \). This angle is greater than \( 2\pi \), so we can find its equivalent angle within the range of \( [0, 2\pi] \). \[ 5\pi/3 - 2\pi = 5\pi/3 - 6\pi/3 = -\pi/3 \] Thus, \( \sin(5\pi/3) = \sin(-\pi/3) \). 2. **Calculate the sine value**: \[ \sin(-\pi/3) = -\sin(\pi/3) = -\frac{\sqrt{3}}{2} \] 3. **Find the principal value**: \[ \sin^{-1}(-\frac{\sqrt{3}}{2}) = -\frac{\pi}{3} \] Therefore, the principal value is: \[ \sin^{-1}(\sin(5\pi/3)) = -\frac{\pi}{3} \] #### Part (ii): \( \cos^{-1}(\cos(4\pi/3)) \) 1. **Identify the angle**: The angle \( 4\pi/3 \) is in the third quadrant. We can express it as: \[ 4\pi/3 = \pi + \pi/3 \] 2. **Find the cosine value**: \[ \cos(4\pi/3) = -\cos(\pi/3) = -\frac{1}{2} \] 3. **Find the principal value**: \[ \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \] Therefore, the principal value is: \[ \cos^{-1}(\cos(4\pi/3)) = \frac{2\pi}{3} \] #### Part (iii): \( \cos\left(\frac{\pi}{3} + \cos^{-1}\left(-\frac{1}{2}\right)\right) \) 1. **Find \( \cos^{-1}(-\frac{1}{2}) \)**: \[ \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \] 2. **Calculate the cosine**: \[ \cos\left(\frac{\pi}{3} + \frac{2\pi}{3}\right) = \cos(\pi) = -1 \] Thus, the final answer for the third part is: \[ \cos\left(\frac{\pi}{3} + \cos^{-1}\left(-\frac{1}{2}\right)\right) = -1 \] ### Summary of Principal Values: 1. \( \sin^{-1}(\sin(5\pi/3)) = -\frac{\pi}{3} \) 2. \( \cos^{-1}(\cos(4\pi/3)) = \frac{2\pi}{3} \) 3. \( \cos\left(\frac{\pi}{3} + \cos^{-1}\left(-\frac{1}{2}\right)\right) = -1 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Find the principal value of each of the following: (i) cos^(-1)(sin((4pi)/3)) (ii) cos^(-1)(tan((3pi)/4))

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3)

Find the principal values of each of the following: sec^(-1)(2sin(3pi)/4) (ii) sec^(-1)(2tan(3pi)/4)

Evaluate each of the following: (i) cos^(-1){cos(-pi/4)} (ii) cos^(-1)(cos((5pi)/4)) (iii) cos^(-1)(cos((4pi)/3))

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)

Evaluate each of the following: sin^(-1)(sinpi/3) (ii) cos^(-1)(cos(2pi)/3) (iii) tan^(-1)(tanpi/4)

Evaluate each of the following: (i) cos^(-1)(cos((13pi)/6)) (ii) cos^(-1)(cos3) (iii) cos^(-1)(cos4)

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

Find the principal value of each of the following: sin^(-1)((sqrt(3)+1)/(2sqrt(2))) (ii) sin^(-1)(cos(pi/4)) (iii) sin^(-1)(tan((5pi)/4))

Find the principal value of each of the following: (i) sin^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(cos (pi/3)) (iii) sin^(-1)((sqrt(3)-1)/(2sqrt(2)))