Home
Class 12
MATHS
(i) Evaluate : sec (cos^(-1).(1)/(2)) ...

(i) Evaluate : `sec (cos^(-1).(1)/(2))`
(ii) slove the equations ` sin^(-1) x + sin^(-1) y = (2pi)/(3)` and ` cos^(-1) x - cos ^(-1) y = (pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
### Step-by-Step Solution #### Part (i): Evaluate \( \sec(\cos^{-1}(1/2)) \) 1. **Define the angle**: Let \( \theta = \cos^{-1}(1/2) \). This means that \( \cos(\theta) = 1/2 \). **Hint**: Remember that \( \cos^{-1}(x) \) gives you the angle whose cosine is \( x \). 2. **Identify the triangle**: In a right triangle, if \( \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \), we can set the adjacent side to 1 and the hypotenuse to 2. 3. **Calculate the opposite side**: Using the Pythagorean theorem: \[ \text{opposite} = \sqrt{\text{hypotenuse}^2 - \text{adjacent}^2} = \sqrt{2^2 - 1^2} = \sqrt{4 - 1} = \sqrt{3} \] 4. **Find \( \sec(\theta) \)**: Recall that \( \sec(\theta) = \frac{1}{\cos(\theta)} \). Since \( \cos(\theta) = 1/2 \): \[ \sec(\theta) = \frac{1}{1/2} = 2 \] 5. **Final result**: Therefore, \( \sec(\cos^{-1}(1/2)) = 2 \). --- #### Part (ii): Solve the equations \( \sin^{-1}(x) + \sin^{-1}(y) = \frac{2\pi}{3} \) and \( \cos^{-1}(x) - \cos^{-1}(y) = \frac{\pi}{3} \) 1. **Label the equations**: Let: - Equation (1): \( \sin^{-1}(x) + \sin^{-1}(y) = \frac{2\pi}{3} \) - Equation (2): \( \cos^{-1}(x) - \cos^{-1}(y) = \frac{\pi}{3} \) 2. **Add the equations**: Adding Equation (1) and Equation (2): \[ \sin^{-1}(x) + \cos^{-1}(x) + \sin^{-1}(y) - \cos^{-1}(y) = \frac{2\pi}{3} + \frac{\pi}{3} \] Using the identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \): \[ \frac{\pi}{2} + \sin^{-1}(y) - \cos^{-1}(y) = \pi \] 3. **Simplify**: Rearranging gives: \[ \sin^{-1}(y) - \cos^{-1}(y) = \pi - \frac{\pi}{2} = \frac{\pi}{2} \] 4. **Use the identity**: From the identity \( \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2} \), we can express: \[ \sin^{-1}(y) = \frac{\pi}{2} + \cos^{-1}(y) \] Substituting into the previous equation: \[ \frac{\pi}{2} + \cos^{-1}(y) - \cos^{-1}(y) = \frac{\pi}{2} \] 5. **Solve for \( y \)**: This implies that \( y = 1 \) (since \( \sin^{-1}(1) = \frac{\pi}{2} \)). 6. **Substitute \( y \) back**: Now substitute \( y = 1 \) into Equation (1): \[ \sin^{-1}(x) + \sin^{-1}(1) = \frac{2\pi}{3} \] Therefore: \[ \sin^{-1}(x) + \frac{\pi}{2} = \frac{2\pi}{3} \] 7. **Solve for \( x \)**: Rearranging gives: \[ \sin^{-1}(x) = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{4\pi - 3\pi}{6} = \frac{\pi}{6} \] Thus: \[ x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] 8. **Final results**: The solutions are \( x = \frac{1}{2} \) and \( y = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2 , find the value of cos^(-1)x+cos^(-1)y .

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2, find the value of cos^(-1)x+cos^(-1)ydot

NAGEEN PRAKASHAN ENGLISH-INVERES TRIGONOMETRIC FUNCTIONS-Exericse 2a
  1. If cos^(-1) x = (pi)/(3), the find the value of sin ^(-1)x.

    Text Solution

    |

  2. If tan ^(-1).(3)/(4)=x, the find the value of sec x.

    Text Solution

    |

  3. (i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations si...

    Text Solution

    |

  4. (i) If sin ^(-) x + sin ^(-1) y = pi//2, then prove that : cos^(-1) x...

    Text Solution

    |

  5. If sin ^(-1) x=(1)/(3), then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

    Text Solution

    |

  6. prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

    Text Solution

    |

  7. Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

    Text Solution

    |

  8. Prove that:tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

    Text Solution

    |

  9. Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

    Text Solution

    |

  10. Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

    Text Solution

    |

  11. Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

    Text Solution

    |

  12. Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  14. 4tan^(- 1)(1/5)=tan^(- 1)(1/70)-tan^(- 1)(1/99)+pi/4

    Text Solution

    |

  15. Prove that : cos ^(-1) ((1- a^(2))/(1+a^2)) + cos ^(-1)((1-b^(2))/(1...

    Text Solution

    |

  16. tan[1/2 sin^(-1)((2a)/(1+a^2)) + 1/2 cos^(-1)((1-a^2)/(1+a^2))]=

    Text Solution

    |

  17. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  18. Prove that: sin^-1(3/5)-cos^-1(12/13)=sin^-1(16/65)

    Text Solution

    |

  19. Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)...

    Text Solution

    |

  20. Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove tha...

    Text Solution

    |