Home
Class 12
MATHS
Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=...

Solve `tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{1+2x}\right) + \tan^{-1}\left(\frac{1}{1+4x}\right) = \tan^{-1}\left(\frac{2}{x^2}\right) \), we will use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step 1: Apply the formula Let \( a = \frac{1}{1+2x} \) and \( b = \frac{1}{1+4x} \). Then we can write: \[ \tan^{-1}\left(\frac{1}{1+2x}\right) + \tan^{-1}\left(\frac{1}{1+4x}\right) = \tan^{-1}\left(\frac{\frac{1}{1+2x} + \frac{1}{1+4x}}{1 - \frac{1}{1+2x} \cdot \frac{1}{1+4x}}\right) \] ### Step 2: Simplify the numerator To simplify the numerator: \[ \frac{1}{1+2x} + \frac{1}{1+4x} = \frac{(1+4x) + (1+2x)}{(1+2x)(1+4x)} = \frac{2 + 6x}{(1+2x)(1+4x)} \] ### Step 3: Simplify the denominator Now simplify the denominator: \[ 1 - \frac{1}{(1+2x)(1+4x)} = \frac{(1+2x)(1+4x) - 1}{(1+2x)(1+4x)} \] Calculating \( (1+2x)(1+4x) - 1 \): \[ (1 + 2x)(1 + 4x) = 1 + 4x + 2x + 8x^2 = 1 + 6x + 8x^2 \] \[ (1 + 6x + 8x^2) - 1 = 6x + 8x^2 \] So, the denominator becomes: \[ \frac{6x + 8x^2}{(1+2x)(1+4x)} \] ### Step 4: Combine the results Now we can substitute back into our equation: \[ \tan^{-1}\left(\frac{\frac{2 + 6x}{(1+2x)(1+4x)}}{\frac{6x + 8x^2}{(1+2x)(1+4x)}}\right) = \tan^{-1}\left(\frac{2 + 6x}{6x + 8x^2}\right) \] ### Step 5: Set the two sides equal Now we have: \[ \tan^{-1}\left(\frac{2 + 6x}{6x + 8x^2}\right) = \tan^{-1}\left(\frac{2}{x^2}\right) \] ### Step 6: Remove the inverse tangent Since the tangent function is one-to-one, we can equate the arguments: \[ \frac{2 + 6x}{6x + 8x^2} = \frac{2}{x^2} \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ (2 + 6x)x^2 = 2(6x + 8x^2) \] ### Step 8: Expand both sides Expanding both sides: \[ 2x^2 + 6x^3 = 12x + 16x^2 \] ### Step 9: Rearrange the equation Rearranging gives: \[ 6x^3 - 14x^2 - 12x = 0 \] ### Step 10: Factor out common terms Factoring out \( 2x \): \[ 2x(3x^2 - 7x - 6) = 0 \] ### Step 11: Solve the quadratic Setting \( 2x = 0 \) gives \( x = 0 \). Now solve the quadratic \( 3x^2 - 7x - 6 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 3 \cdot (-6)}}{2 \cdot 3} \] Calculating the discriminant: \[ 49 + 72 = 121 \] So: \[ x = \frac{7 \pm 11}{6} \] This gives: \[ x = 3 \quad \text{and} \quad x = -\frac{2}{3} \] ### Final Solutions Thus, the solutions are: \[ x = 0, \quad x = 3, \quad x = -\frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2b|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2x + 1)) + tan^-1 (1/(4x + 1)) = tan^-1 (2/x^2)

Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2x + 1)) + tan^-1 (1/(4x + 1)) = tan^-1 (2/x^2)

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2)) , then the number of all possible values of x is/are

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

NAGEEN PRAKASHAN ENGLISH-INVERES TRIGONOMETRIC FUNCTIONS-Exericse 2a
  1. Prove that : cot^(-1)((1+ab)/(a-b))+cot^(-1)((1+bc)/(b-c))+cot^(-1)((1...

    Text Solution

    |

  2. If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  3. 4tan^(- 1)(1/5)=tan^(- 1)(1/70)-tan^(- 1)(1/99)+pi/4

    Text Solution

    |

  4. Prove that : cos ^(-1) ((1- a^(2))/(1+a^2)) + cos ^(-1)((1-b^(2))/(1...

    Text Solution

    |

  5. tan[1/2 sin^(-1)((2a)/(1+a^2)) + 1/2 cos^(-1)((1-a^2)/(1+a^2))]=

    Text Solution

    |

  6. Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65...

    Text Solution

    |

  7. Prove that: sin^-1(3/5)-cos^-1(12/13)=sin^-1(16/65)

    Text Solution

    |

  8. Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)...

    Text Solution

    |

  9. Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove tha...

    Text Solution

    |

  10. If cos^(-1)(x/2)+cos^(-1)(y/3) = theta, prove that 9x^2- 12xycostheta+...

    Text Solution

    |

  11. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+...

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

    Text Solution

    |

  13. Solve the equation for x : "sin"^(-1)(5)/(x)+"sin"^(-1)(12)/(x)=(pi...

    Text Solution

    |

  14. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  15. The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^...

    Text Solution

    |

  16. Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

    Text Solution

    |

  17. If sin (picostheta) = cos (pisintheta) , then show that, theta = +-1/2...

    Text Solution

    |

  18. If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove th...

    Text Solution

    |

  19. If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , th...

    Text Solution

    |

  20. Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(...

    Text Solution

    |