Home
Class 12
MATHS
sin^(-1) (sin=(2pi)/(3)) = ?...

`sin^(-1) (sin=(2pi)/(3)) = ?`

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(2pi)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( \sin^{-1}(\sin(\frac{2\pi}{3})) \), we will follow these steps: ### Step 1: Identify the angle We start with the angle \( \frac{2\pi}{3} \). We need to find the sine of this angle. ### Step 2: Use the sine identity We can express \( \frac{2\pi}{3} \) in terms of a related angle in the first quadrant. We know that: \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) \] This is because \( \frac{2\pi}{3} \) is in the second quadrant where sine is positive. ### Step 3: Calculate \( \sin\left(\frac{\pi}{3}\right) \) Now we calculate \( \sin\left(\frac{\pi}{3}\right) \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute back into the inverse sine function Now we substitute back into the inverse sine function: \[ \sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right) \] ### Step 5: Apply the property of inverse sine The property of inverse sine states that \( \sin^{-1}(\sin x) = x \) if \( x \) is in the range of \( \sin^{-1} \), which is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). However, \( \frac{2\pi}{3} \) is not in this range. ### Step 6: Find the principal value Since \( \frac{2\pi}{3} \) is outside the range, we need to find the equivalent angle within the range. The equivalent angle is: \[ \frac{\pi}{3} \] Thus, we have: \[ \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{\pi}{3} \] ### Final Answer Therefore, the final answer is: \[ \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(sin (3 pi)/(5))

sin^(-1)sin((3pi)/5)

The value of sin^(-1)(sin'(3pi)/(5)) is "….."

The value of sin^(-1)(sin((3pi)/(5)))

The value of sin^(-1)(sin'(3pi)/(5)) is "….."

Evaluate: sin^(-1)(sin((3pi)/5))

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

sin^-1 (sin frac {2pi}3 )