Home
Class 12
MATHS
If tan ^(-1) 2x + tan ^(-1) 3 xx = (pi...

If ` tan ^(-1) 2x + tan ^(-1) 3 xx = (pi)/(4)`, then x = ?

A

1

B

-1

C

`-(1)/(6)`

D

`(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \), we can use the identity for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step-by-Step Solution: 1. **Apply the Identity**: We apply the identity with \( a = 2x \) and \( b = 3x \): \[ \tan^{-1}(2x) + \tan^{-1}(3x) = \tan^{-1}\left(\frac{2x + 3x}{1 - (2x)(3x)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] 2. **Set the Equation**: Since we know that \( \tan^{-1}(1) = \frac{\pi}{4} \), we can set the two expressions equal to each other: \[ \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) = \tan^{-1}(1) \] 3. **Remove the Inverse Tangent**: By applying the tangent function to both sides, we get: \[ \frac{5x}{1 - 6x^2} = 1 \] 4. **Cross-Multiply**: Cross-multiplying gives: \[ 5x = 1 - 6x^2 \] 5. **Rearrange the Equation**: Rearranging this equation leads to: \[ 6x^2 + 5x - 1 = 0 \] 6. **Solve the Quadratic Equation**: We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 6, b = 5, c = -1 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} \] \[ x = \frac{-5 \pm \sqrt{25 + 24}}{12} \] \[ x = \frac{-5 \pm \sqrt{49}}{12} \] \[ x = \frac{-5 \pm 7}{12} \] 7. **Calculate the Roots**: This gives us two potential solutions: \[ x = \frac{2}{12} = \frac{1}{6} \quad \text{and} \quad x = \frac{-12}{12} = -1 \] 8. **Select the Valid Solution**: Since \( x \) must be a non-negative value in the context of the problem, we choose: \[ x = \frac{1}{6} \] ### Final Answer: Thus, the value of \( x \) is: \[ \boxed{\frac{1}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4