Home
Class 12
MATHS
If sin ^(-1) x + sin ^(-1) y = (pi)/(6),...

If `sin ^(-1) x + sin ^(-1) y = (pi)/(6)`, then `cos^(-1) x + cos ^(-1) y =?`

A

`(pi)/(6)`

B

`(5pi)/(6)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{6} \] We need to find the value of: \[ \cos^{-1} x + \cos^{-1} y \] ### Step 1: Use the identity for inverse sine and cosine We know the identity: \[ \sin^{-1} a + \cos^{-1} a = \frac{\pi}{2} \] Using this identity, we can express \(\sin^{-1} x\) and \(\sin^{-1} y\) in terms of \(\cos^{-1} x\) and \(\cos^{-1} y\): \[ \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \] \[ \sin^{-1} y = \frac{\pi}{2} - \cos^{-1} y \] ### Step 2: Substitute into the original equation Substituting these expressions into the original equation gives: \[ \left(\frac{\pi}{2} - \cos^{-1} x\right) + \left(\frac{\pi}{2} - \cos^{-1} y\right) = \frac{\pi}{6} \] ### Step 3: Simplify the equation Now, we simplify the left-hand side: \[ \frac{\pi}{2} + \frac{\pi}{2} - \cos^{-1} x - \cos^{-1} y = \frac{\pi}{6} \] This simplifies to: \[ \pi - (\cos^{-1} x + \cos^{-1} y) = \frac{\pi}{6} \] ### Step 4: Isolate \(\cos^{-1} x + \cos^{-1} y\) Now, we isolate \(\cos^{-1} x + \cos^{-1} y\): \[ \cos^{-1} x + \cos^{-1} y = \pi - \frac{\pi}{6} \] ### Step 5: Calculate the right-hand side To calculate \(\pi - \frac{\pi}{6}\), we convert \(\pi\) into a fraction with a denominator of 6: \[ \pi = \frac{6\pi}{6} \] Thus, \[ \cos^{-1} x + \cos^{-1} y = \frac{6\pi}{6} - \frac{\pi}{6} = \frac{5\pi}{6} \] ### Final Answer So, the value of \(\cos^{-1} x + \cos^{-1} y\) is: \[ \boxed{\frac{5\pi}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2 , find the value of cos^(-1)x+cos^(-1)y .

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2, find the value of cos^(-1)x+cos^(-1)ydot