Home
Class 12
MATHS
sin(2tan^(-1) .(4)/(5))= ?...

`sin(2tan^(-1) .(4)/(5))= ?`

A

`(40)/(41)`

B

`(9)/(41)`

C

`(16)/(25)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin(2 \tan^{-1}(\frac{4}{5})) \), we will use the formula for \( \sin(2 \tan^{-1}(x)) \): \[ \sin(2 \tan^{-1}(x)) = \frac{2x}{1 + x^2} \] ### Step-by-step Solution: 1. **Identify \( x \)**: Here, we have \( x = \frac{4}{5} \). 2. **Apply the formula**: Substitute \( x \) into the formula: \[ \sin(2 \tan^{-1}(\frac{4}{5})) = \frac{2 \cdot \frac{4}{5}}{1 + \left(\frac{4}{5}\right)^2} \] 3. **Calculate the numerator**: \[ 2 \cdot \frac{4}{5} = \frac{8}{5} \] 4. **Calculate the denominator**: First, compute \( \left(\frac{4}{5}\right)^2 \): \[ \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] Now, add this to 1: \[ 1 + \frac{16}{25} = \frac{25}{25} + \frac{16}{25} = \frac{41}{25} \] 5. **Combine the results**: Now substitute the numerator and denominator back into the formula: \[ \sin(2 \tan^{-1}(\frac{4}{5})) = \frac{\frac{8}{5}}{\frac{41}{25}} \] 6. **Simplify the fraction**: Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{8}{5} \cdot \frac{25}{41} = \frac{8 \cdot 25}{5 \cdot 41} = \frac{200}{205} = \frac{40}{41} \] ### Final Answer: \[ \sin(2 \tan^{-1}(\frac{4}{5})) = \frac{40}{41} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If x=sin(2tan^(-1)2)and y=sin((1)/(2)tan^(-1).(4)/(3)) , then prove that y^2 = 1 - x

Evaluate the following : sin^(2) ( tan^(-1) (3/4))

Prove that : cos^(-1).(4)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11) (ii) Prove that : sin^(-1).(3)/(5)+ tan ^(-1).(3)/(5) = tan^(-1) .(27)/(11)

Prove that sin ^(-1).(3)/(5) = tan ^(-1) .(3)/(4) .

Evaluate the following:(i) sin(1/2\ cos^(-1)(4/5)) (ii) sin(2\ tan^(-1)(2/3))+cos(tan^(-1)sqrt(3))

Show that : cos(2\ tan^(-1)(1/7 ))=sin(4\ tan^(-1) (1/3) )

Simplify (i) sin(pitan{cot^(-1)((-2)/3)}) (ii) sin(2"tan"^(-1)1/2) (iii) cos(2cos^(-1)(1//5)+sin^(-1)(1//5))

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?