Home
Class 12
MATHS
sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?...

`sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?`

A

`-sqrt(3)/(2)`

B

`-(1)/(2)`

C

`(1)/(2)`

D

`sqrt(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin\left(\sin^{-1}\left(-\frac{1}{2}\right) + \frac{\pi}{3}\right) \), we can follow these steps: ### Step 1: Rewrite the Inverse Sine We start with the expression: \[ \sin\left(\sin^{-1}\left(-\frac{1}{2}\right) + \frac{\pi}{3}\right) \] Using the property of inverse sine, we know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, we can rewrite: \[ \sin^{-1}\left(-\frac{1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right) \] ### Step 2: Find the Value of \( \sin^{-1}\left(\frac{1}{2}\right) \) We know that: \[ \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] Therefore: \[ \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \] ### Step 3: Substitute Back into the Expression Now we can substitute this back into our original expression: \[ \sin\left(-\frac{\pi}{6} + \frac{\pi}{3}\right) \] ### Step 4: Simplify the Angle To simplify the angle, we need a common denominator: \[ -\frac{\pi}{6} + \frac{\pi}{3} = -\frac{\pi}{6} + \frac{2\pi}{6} = \frac{\pi}{6} \] ### Step 5: Calculate the Sine Now we find: \[ \sin\left(\frac{\pi}{6}\right) \] We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Final Answer Thus, the value of the expression \( \sin\left(\sin^{-1}\left(-\frac{1}{2}\right) + \frac{\pi}{3}\right) \) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2a|34 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

sin^(-1)sin((3pi)/5)

sin^(-1) (sin=(2pi)/(3)) = ?

sin^(-1)(sin((2pi)/3))

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

sin^(-1)(sin (3 pi)/(5))

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3 .

Simplified value of sin [ (pi)/(2) - sin^(-1) (- (sqrt3)/(2)) ] is :

Which of the following is/are a rational number? sin(tan^(-1)3+tan^(-1)(2/3)) cos(pi/2-sin^(-1)(3/4)) (log)_2("sin"(1/4)sin^(-1)(63/8)] tan(1/2cos^(-1)(sqrt(5)/3))