Home
Class 12
MATHS
"cosec"^(-1)(2)...

`"cosec"^(-1)(2)`

Text Solution

AI Generated Solution

To solve the problem \( \csc^{-1}(2) \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Inverse Cosecant Function**: The expression \( \csc^{-1}(x) \) is the angle \( \theta \) such that \( \csc(\theta) = x \). Thus, we need to find an angle \( \theta \) for which \( \csc(\theta) = 2 \). 2. **Using the Definition of Cosecant**: ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

Find the minimum value of (sec^(-1) x)^(2) + (cosec^(-1) x)^(2)

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))

cosec"^(-1)(-sqrt(2))

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

Prove that : (sec^(2)A-1)("cosec"^(2)A-1)=1

Prove that : "tan"^(2)("sec"^(-1) 2)+"cot"^(2)("cosec"^(-1) 3)=11 .

Statement I cosec^(-1)(1/2 +1/sqrt2) gt sec^(-1)(1/2+1/sqrt2) Statement II cosec^(-1) x gt sec^(-1) x", if " 1 le x lt sqrt2

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))