Home
Class 12
MATHS
tan^(-1)sqrt(3)-sec^(-1)(-2)is equal to...

`tan^(-1)sqrt(3)-sec^(-1)(-2)`is equal to(a) `pi` (B) `-pi/3`(C) `pi/3` (D) `(2pi)/3`

A

`pi`

B

`-(pi)/(3)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

AI Generated Solution

To solve the expression \( \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) \), we will evaluate each term separately and then combine the results. ### Step-by-Step Solution 1. **Evaluate \( \tan^{-1}(\sqrt{3}) \)**: - Let \( y = \tan^{-1}(\sqrt{3}) \). - This implies \( \tan(y) = \sqrt{3} \). - We know that \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exericse 2c|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

Choose the correct answer int1sqrt(3)(dx)/(1+x^2) equals (A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

Choose the correct answer int_1^sqrt(3) (dx)/(1+x^2) equals(A) pi/3 (B) (2pi)/3 (C) pi/6 (D) pi/(12)

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= (a) pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

sum_(n=1)^oo sin^-1( (sqrt(n)-(sqrt(n-1)))/(sqrt((n)(n+1)) )= (A) pi/4 (B) pi/2 (C) - pi/3 (D) pi/3