Home
Class 11
MATHS
sin^(2)24^(@)-cos^(2)84^(@)=?...

`sin^(2)24^(@)-cos^(2)84^(@)=?`

A

`(sqrt(5)-1)/(8)`

B

`(sqrt(5)+1)/(8)`

C

`(sqrt(5)-1)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^2 24^\circ - \cos^2 84^\circ \), we can follow these steps: ### Step 1: Rewrite \( \cos^2 84^\circ \) Using the co-function identity, we know that: \[ \cos(90^\circ - \theta) = \sin(\theta) \] Thus, we can rewrite \( \cos 84^\circ \) as: \[ \cos 84^\circ = \sin(90^\circ - 84^\circ) = \sin 6^\circ \] So, we have: \[ \cos^2 84^\circ = \sin^2 6^\circ \] ### Step 2: Substitute into the expression Now we substitute this back into the original expression: \[ \sin^2 24^\circ - \cos^2 84^\circ = \sin^2 24^\circ - \sin^2 6^\circ \] ### Step 3: Apply the difference of squares identity We can use the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ \sin^2 24^\circ - \sin^2 6^\circ = (\sin 24^\circ - \sin 6^\circ)(\sin 24^\circ + \sin 6^\circ) \] ### Step 4: Use the sum and difference identities for sine Now we apply the sine addition and subtraction identities: \[ \sin a - \sin b = 2 \sin\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right) \] \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] For \( a = 24^\circ \) and \( b = 6^\circ \): - \( \sin 24^\circ - \sin 6^\circ = 2 \sin\left(\frac{24^\circ - 6^\circ}{2}\right) \cos\left(\frac{24^\circ + 6^\circ}{2}\right) = 2 \sin(9^\circ) \cos(15^\circ) \) - \( \sin 24^\circ + \sin 6^\circ = 2 \sin\left(\frac{24^\circ + 6^\circ}{2}\right) \cos\left(\frac{24^\circ - 6^\circ}{2}\right) = 2 \sin(15^\circ) \cos(9^\circ) \) ### Step 5: Combine the results Now substituting these results back into our expression: \[ \sin^2 24^\circ - \sin^2 6^\circ = (2 \sin 9^\circ \cos 15^\circ)(2 \sin 15^\circ \cos 9^\circ) \] This simplifies to: \[ 4 \sin 9^\circ \cos 15^\circ \sin 15^\circ \cos 9^\circ \] ### Step 6: Use the double angle identity Using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \): \[ = 4 \cdot \frac{1}{2} \sin 18^\circ \cdot \frac{1}{2} \sin 30^\circ = \sin 18^\circ \cdot \frac{1}{2} \] Since \( \sin 30^\circ = \frac{1}{2} \), we have: \[ = \sin 18^\circ \cdot \frac{1}{2} \] ### Step 7: Final Value The value of \( \sin 30^\circ = \frac{1}{2} \) and we know \( \sin 18^\circ = \frac{\sqrt{5}-1}{4} \): \[ \sin 18^\circ \cdot \frac{1}{2} = \frac{\sqrt{5}-1}{8} \] Thus, the final answer is: \[ \frac{\sqrt{5}-1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3O|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ((sin 77^(@))/(cos 13^(@)))^(2)+((cos 77^(@))/(sin 13^(@)))^(2)-2cos^(2)45^(@)

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

The value of the determinant Delta=|{:(sin^(2)23^(@)" "sin^(2)67^(@)" "cos180^(@)),(-sin^(2)67^(@)" "-sin^(2)23^(@)" "-cos180^(@)),(cos180^(@)" "sin^(2)23^(@)" "sin^(2)67^(@)):}| is

Evaluate : (i) cos^(2) 25^(@) - sin^(2)65^(@) - tan^(2)45^(@) (ii) ((sin 77)/(cos 13))^(2) + ((cos 77)/(sin 13))^(2) - 2 cos^(2) 45^(@)

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

cos 12 ^(@) cos 24 ^(@) cos 36 ^(@) cos 48^(@) cos 72^(@) cos 84^(@) = (1)/(2 ^(6))

Find the value of [(sin^2 2 2^(@)+sin^2 6 8^(@))/(cos^2 2 2^(@)+cos^2 6 8^(@))+sin^2 6 3^(@)+cos6 3^(@)sin2 7^(@)]

Show that sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)