Home
Class 11
MATHS
Solve: 2sin^(2)theta+sin^(2)2theta=2...

Solve: `2sin^(2)theta+sin^(2)2theta=2`

A

`(npi-pi/3)`

B

`npi-pi/6`

C

`npi-pi/4`

D

`npi-pi/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sin^2\theta + \sin^2(2\theta) = 2 \), we can follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ 2\sin^2\theta + \sin^2(2\theta) = 2 \] ### Step 2: Use the double angle identity We know that \( \sin(2\theta) = 2\sin\theta\cos\theta \). Therefore, we can express \( \sin^2(2\theta) \) as: \[ \sin^2(2\theta) = (2\sin\theta\cos\theta)^2 = 4\sin^2\theta\cos^2\theta \] ### Step 3: Substitute into the equation Substituting this back into the equation gives: \[ 2\sin^2\theta + 4\sin^2\theta\cos^2\theta = 2 \] ### Step 4: Factor out common terms Let \( x = \sin^2\theta \). Then, we can rewrite the equation as: \[ 2x + 4x(1 - x) = 2 \] This simplifies to: \[ 2x + 4x - 4x^2 = 2 \] or: \[ 6x - 4x^2 = 2 \] ### Step 5: Rearrange the equation Rearranging gives: \[ 4x^2 - 6x + 2 = 0 \] ### Step 6: Solve the quadratic equation Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 4, b = -6, c = 2 \): \[ x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} \] \[ x = \frac{6 \pm \sqrt{36 - 32}}{8} \] \[ x = \frac{6 \pm \sqrt{4}}{8} \] \[ x = \frac{6 \pm 2}{8} \] This gives us two solutions: \[ x_1 = \frac{8}{8} = 1 \quad \text{and} \quad x_2 = \frac{4}{8} = \frac{1}{2} \] ### Step 7: Back substitute for \( \sin^2\theta \) Thus, we have: 1. \( \sin^2\theta = 1 \) which implies \( \sin\theta = \pm 1 \) 2. \( \sin^2\theta = \frac{1}{2} \) which implies \( \sin\theta = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \) ### Step 8: Find the angles For \( \sin\theta = 1 \): \[ \theta = \frac{\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] For \( \sin\theta = -1 \): \[ \theta = \frac{3\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] For \( \sin\theta = \frac{\sqrt{2}}{2} \): \[ \theta = \frac{\pi}{4} + 2n\pi \quad \text{or} \quad \theta = \frac{3\pi}{4} + 2n\pi \quad (n \in \mathbb{Z}) \] For \( \sin\theta = -\frac{\sqrt{2}}{2} \): \[ \theta = \frac{5\pi}{4} + 2n\pi \quad \text{or} \quad \theta = \frac{7\pi}{4} + 2n\pi \quad (n \in \mathbb{Z}) \] ### Final Solution Thus, the complete solution set is: \[ \theta = \frac{\pi}{2} + 2n\pi, \quad \theta = \frac{3\pi}{2} + 2n\pi, \quad \theta = \frac{\pi}{4} + 2n\pi, \quad \theta = \frac{3\pi}{4} + 2n\pi, \quad \theta = \frac{5\pi}{4} + 2n\pi, \quad \theta = \frac{7\pi}{4} + 2n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3O|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Solve the equation : 2sin^(2)theta+sin^(2)theta=2 for theta in (-pi,pi) .

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

Solve sin^(2) theta gt cos^(2) theta .

Solve sin^(2) theta gt cos^(2) theta .

Solve 2 cos^(2) theta = 3 sin theta

Solve: sin2theta=sin((2pi)/(3)-theta)

Solve 3tan^(2) theta-2 sin theta=0 .

Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

Solve 2 cos^(2) theta +3 sin theta=0 .

Solve : 7 sin^(2) theta + 3 cos^(2) theta = 4 .

NAGEEN PRAKASHAN ENGLISH-TRIGNOMETRIC FUNCTIONS-EXERCISES 3P
  1. If 4sin^(2)theta=3, then general value of theta is:

    Text Solution

    |

  2. If sin7theta=cos5 theta, then general value of theta is:

    Text Solution

    |

  3. If tan3theta=cottheta, then general value of theta is :

    Text Solution

    |

  4. Find the general value of theta from the equation tantheta+tan2theta+t...

    Text Solution

    |

  5. Solve the following equation : cottheta+t a ntheta=2

    Text Solution

    |

  6. The solution of cos2theta=cos^(2)theta is:

    Text Solution

    |

  7. cottheta=-sqrt(3) and cosec theta=2

    Text Solution

    |

  8. Solve: 2sin^(2)theta+sin^(2)2theta=2

    Text Solution

    |

  9. If sqrt(3)sintheta-costheta=0, then one general value of theta is:

    Text Solution

    |

  10. In DeltaABC, a=12 m, angleB=30^(@) and angleC=90^(@), then area of Del...

    Text Solution

    |

  11. In DeltaABC, a=12 cm, angleB=30^(@) and angleC=90^(@), then area of De...

    Text Solution

    |

  12. In DeltaABC, cotA/2, cotB/2, cotC/2 are in A.P., then the true stateme...

    Text Solution

    |

  13. In DeltaABC, if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot...

    Text Solution

    |

  14. In DeltaABC, a=9, b=8 and c=4, then 3cosB-6cosC=?

    Text Solution

    |

  15. In DeltaABC, If 1/(a+b)+1/(b+c)=3/(a+b+c), then angleB=?

    Text Solution

    |

  16. In any DeltaABC, prove that a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)...

    Text Solution

    |

  17. With usual notations, if in a triangle ABC, (b+c)/11 = (c+a)/12 = (a...

    Text Solution

    |

  18. In DeltaABC, (b-c)cotA/2+(c-a)cotB/2+(a-b)cotC/2=?

    Text Solution

    |

  19. In a DeltaABC, if (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca), prove th...

    Text Solution

    |

  20. In DeltaABC, a=3,b=4,c=2, then cosA/2=?

    Text Solution

    |