Home
Class 11
MATHS
In DeltaABC, a=12 cm, angleB=30^(@) and ...

In `DeltaABC`, a=12 cm, `angleB=30^(@)` and `angleC=90^(@)`, then area of `DeltaABC=?`

A

`6sqrt(3) m^(2)`

B

`24sqrt(3) m^(2)`

C

`36sqrt(3) m^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC where side \( a = 12 \, \text{cm} \), \( \angle B = 30^\circ \), and \( \angle C = 90^\circ \), we can follow these steps: ### Step 1: Identify the triangle and its properties In triangle ABC: - \( \angle C = 90^\circ \) (right angle) - \( \angle B = 30^\circ \) - Therefore, \( \angle A = 180^\circ - (30^\circ + 90^\circ) = 60^\circ \) ### Step 2: Use the formula for the area of a triangle The area \( A \) of a triangle can be calculated using the formula: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] In this triangle, we can consider side \( BC \) as the base and height \( AC \) as the height. ### Step 3: Find the length of side \( BC \) Since \( \angle B = 30^\circ \) and \( a = 12 \, \text{cm} \) (which is opposite to angle A), we can use the sine function to find \( BC \): \[ \sin(30^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AC}{AB} \] Here, \( AB = a = 12 \, \text{cm} \), therefore: \[ \sin(30^\circ) = \frac{AC}{12} \] We know that \( \sin(30^\circ) = \frac{1}{2} \), so: \[ \frac{1}{2} = \frac{AC}{12} \] Multiplying both sides by 12 gives: \[ AC = 12 \times \frac{1}{2} = 6 \, \text{cm} \] ### Step 4: Find the length of side \( AC \) Now we can use the tangent function to find \( AC \): \[ \tan(30^\circ) = \frac{AC}{BC} \] We know \( BC = 12 \, \text{cm} \) (the side opposite angle A): \[ \tan(30^\circ) = \frac{1}{\sqrt{3}} = \frac{AC}{12} \] Thus, we have: \[ AC = 12 \times \frac{1}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3} \, \text{cm} \] ### Step 5: Calculate the area Now we can substitute the values of base \( BC \) and height \( AC \) into the area formula: \[ A = \frac{1}{2} \times BC \times AC = \frac{1}{2} \times 12 \times 4\sqrt{3} \] Calculating this gives: \[ A = \frac{1}{2} \times 48\sqrt{3} = 24\sqrt{3} \, \text{cm}^2 \] ### Final Answer The area of triangle ABC is: \[ \boxed{24\sqrt{3} \, \text{cm}^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3O|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , a=12 m, angleB=30^(@) and angleC=90^(@) , then area of DeltaABC=?

In DeltaABC , a=16, b=12 and angleB=30^(@) , find sinA.

Find the area of DeltaABC , if a=10cm, angleB=45^(@) and angleC=45^(@)

Find the area of DeltaABC , if a=10cm, angleB=45^(@) and angleC=45^(@)

In a DeltaABC , if angleA=45^(@). angleB=60^(@) and angleC=75^(@) , find the ratio of its sides.

In DeltaABC, angleB=90^(@), angleA=30^(@), b=20cm , find a and c.

DeltaABC , angleA+angleB=65^(@) , angleB+angleC=140^(@) ,then angleB is equal to

In DeltaABC, A=(1,2), B=(5, 5), angleACB=90^(0) . If area of DeltaABC is to be 6.5 sq. units, then the possible number of points for C is

In DeltaABC , a=4, b=6 and angleB=30^(@) , evaluate sinA.

In DeltaABC, angleA=60^(0), angleB=45^(@) , find a:b .

NAGEEN PRAKASHAN ENGLISH-TRIGNOMETRIC FUNCTIONS-EXERCISES 3P
  1. If 4sin^(2)theta=3, then general value of theta is:

    Text Solution

    |

  2. If sin7theta=cos5 theta, then general value of theta is:

    Text Solution

    |

  3. If tan3theta=cottheta, then general value of theta is :

    Text Solution

    |

  4. Find the general value of theta from the equation tantheta+tan2theta+t...

    Text Solution

    |

  5. Solve the following equation : cottheta+t a ntheta=2

    Text Solution

    |

  6. The solution of cos2theta=cos^(2)theta is:

    Text Solution

    |

  7. cottheta=-sqrt(3) and cosec theta=2

    Text Solution

    |

  8. Solve: 2sin^(2)theta+sin^(2)2theta=2

    Text Solution

    |

  9. If sqrt(3)sintheta-costheta=0, then one general value of theta is:

    Text Solution

    |

  10. In DeltaABC, a=12 m, angleB=30^(@) and angleC=90^(@), then area of Del...

    Text Solution

    |

  11. In DeltaABC, a=12 cm, angleB=30^(@) and angleC=90^(@), then area of De...

    Text Solution

    |

  12. In DeltaABC, cotA/2, cotB/2, cotC/2 are in A.P., then the true stateme...

    Text Solution

    |

  13. In DeltaABC, if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot...

    Text Solution

    |

  14. In DeltaABC, a=9, b=8 and c=4, then 3cosB-6cosC=?

    Text Solution

    |

  15. In DeltaABC, If 1/(a+b)+1/(b+c)=3/(a+b+c), then angleB=?

    Text Solution

    |

  16. In any DeltaABC, prove that a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)...

    Text Solution

    |

  17. With usual notations, if in a triangle ABC, (b+c)/11 = (c+a)/12 = (a...

    Text Solution

    |

  18. In DeltaABC, (b-c)cotA/2+(c-a)cotB/2+(a-b)cotC/2=?

    Text Solution

    |

  19. In a DeltaABC, if (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca), prove th...

    Text Solution

    |

  20. In DeltaABC, a=3,b=4,c=2, then cosA/2=?

    Text Solution

    |