Home
Class 11
MATHS
In DeltaABC, cotA/2, cotB/2, cotC/2 are ...

In `DeltaABC, cotA/2, cotB/2, cotC/2` are in A.P., then the true statement is:

A

`b^(2)=ac`

B

`c^(2)=ab`

C

`2b=a+c`

D

`2a=b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2} \) are in arithmetic progression (A.P.), then it leads to a specific relationship among the angles \( A, B, C \) in triangle \( ABC \). ### Step-by-step Solution: 1. **Understanding A.P. Condition**: If three numbers \( x, y, z \) are in A.P., then the condition is: \[ 2y = x + z \] Here, we can substitute \( x = \cot \frac{A}{2} \), \( y = \cot \frac{B}{2} \), and \( z = \cot \frac{C}{2} \). 2. **Setting Up the Equation**: From the A.P. condition, we have: \[ 2 \cot \frac{B}{2} = \cot \frac{A}{2} + \cot \frac{C}{2} \] 3. **Using the Angle Sum Property**: In triangle \( ABC \), we know that: \[ A + B + C = 180^\circ \] Therefore, we can express \( B \) as: \[ B = 180^\circ - A - C \] Hence, \[ \frac{B}{2} = 90^\circ - \frac{A + C}{2} \] 4. **Substituting into the Equation**: Now substituting \( \cot \frac{B}{2} \): \[ 2 \cot \left(90^\circ - \frac{A + C}{2}\right) = \cot \frac{A}{2} + \cot \frac{C}{2} \] Using the identity \( \cot(90^\circ - x) = \tan x \), we rewrite the left side: \[ 2 \tan \frac{A + C}{2} = \cot \frac{A}{2} + \cot \frac{C}{2} \] 5. **Expressing Cotangents**: Recall that \( \cot x = \frac{1}{\tan x} \): \[ 2 \tan \frac{A + C}{2} = \frac{1}{\tan \frac{A}{2}} + \frac{1}{\tan \frac{C}{2}} \] 6. **Finding a Common Denominator**: The right side can be expressed as: \[ \frac{\tan \frac{C}{2} + \tan \frac{A}{2}}{\tan \frac{A}{2} \tan \frac{C}{2}} \] Thus, we have: \[ 2 \tan \frac{A + C}{2} = \frac{\tan \frac{C}{2} + \tan \frac{A}{2}}{\tan \frac{A}{2} \tan \frac{C}{2}} \] 7. **Using the Tangent Addition Formula**: Using the identity for \( \tan(A + C) \): \[ \tan(A + C) = \frac{\tan A + \tan C}{1 - \tan A \tan C} \] This leads us to a relationship involving \( A \) and \( C \). 8. **Final Relationship**: After simplification, we find that: \[ A + C = 2B \] This indicates that \( A, B, C \) are in A.P. since \( 2B = A + C \). ### Conclusion: Thus, the true statement is: \[ A + C = 2B \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3O|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , (b-c)cotA/2+(c-a)cotB/2+(a-b)cotC/2=?

In DeltaABC , a,b,c are in A.P., prove that: cotA/2.cotC/2=3

In triangle ABC, if cotA⋅cotC= 1 / 2 and cotB⋅cotC= 1 / 18 , then the value of tanC is

In triangle A B C , if cotA ,cotB ,cotC are in AdotPdot, then a^2,b^2,c^2 are in ____________ progression.

In triangle A B C , if cotA ,cotB ,cotC are in AdotPdot, then a^2,b^2,c^2 are in ____________ progression.

If in a DeltaABC, sin A, sin B, sin C are in A.P., show that 3 tan, A/2 tan, C/2 = 1

In triangle A B C , if cotA *cotC=1/2a n dcot B* cotC=1/(18), then the value of tanC is

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

In a DeltaABC the angles A, B, C are in A.P. show that 2cos""(A-C)/2=(a+c)/sqrt((a^(2)-ac+c^(2)))

IN any DeltaABC prove that if a^(2),b^(2) and c^(2) are in AP, the cotA, cotB and cotC are also is AP.

NAGEEN PRAKASHAN ENGLISH-TRIGNOMETRIC FUNCTIONS-EXERCISES 3P
  1. If 4sin^(2)theta=3, then general value of theta is:

    Text Solution

    |

  2. If sin7theta=cos5 theta, then general value of theta is:

    Text Solution

    |

  3. If tan3theta=cottheta, then general value of theta is :

    Text Solution

    |

  4. Find the general value of theta from the equation tantheta+tan2theta+t...

    Text Solution

    |

  5. Solve the following equation : cottheta+t a ntheta=2

    Text Solution

    |

  6. The solution of cos2theta=cos^(2)theta is:

    Text Solution

    |

  7. cottheta=-sqrt(3) and cosec theta=2

    Text Solution

    |

  8. Solve: 2sin^(2)theta+sin^(2)2theta=2

    Text Solution

    |

  9. If sqrt(3)sintheta-costheta=0, then one general value of theta is:

    Text Solution

    |

  10. In DeltaABC, a=12 m, angleB=30^(@) and angleC=90^(@), then area of Del...

    Text Solution

    |

  11. In DeltaABC, a=12 cm, angleB=30^(@) and angleC=90^(@), then area of De...

    Text Solution

    |

  12. In DeltaABC, cotA/2, cotB/2, cotC/2 are in A.P., then the true stateme...

    Text Solution

    |

  13. In DeltaABC, if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot...

    Text Solution

    |

  14. In DeltaABC, a=9, b=8 and c=4, then 3cosB-6cosC=?

    Text Solution

    |

  15. In DeltaABC, If 1/(a+b)+1/(b+c)=3/(a+b+c), then angleB=?

    Text Solution

    |

  16. In any DeltaABC, prove that a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)...

    Text Solution

    |

  17. With usual notations, if in a triangle ABC, (b+c)/11 = (c+a)/12 = (a...

    Text Solution

    |

  18. In DeltaABC, (b-c)cotA/2+(c-a)cotB/2+(a-b)cotC/2=?

    Text Solution

    |

  19. In a DeltaABC, if (2cosA)/a+(cosB)/b+(2cosC)/c=a/(bc)+b/(ca), prove th...

    Text Solution

    |

  20. In DeltaABC, a=3,b=4,c=2, then cosA/2=?

    Text Solution

    |