Home
Class 11
MATHS
If 3tan^(2)theta-2sintheta=0, then gener...

If `3tan^(2)theta-2sintheta=0`, then general value of `theta` is:

A

`npi`

B

`(npi)/(2)`

C

`(npi)/(3)`

D

`(npi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \tan^2 \theta - 2 \sin \theta = 0\), we will follow these steps: ### Step 1: Rewrite the equation Starting with the given equation: \[ 3 \tan^2 \theta - 2 \sin \theta = 0 \] We can rearrange it to isolate \(\tan^2 \theta\): \[ 3 \tan^2 \theta = 2 \sin \theta \] Thus, \[ \tan^2 \theta = \frac{2}{3} \sin \theta \] ### Step 2: Use the identity for \(\tan^2 \theta\) Recall the identity: \[ \tan^2 \theta = \sec^2 \theta - 1 \] Substituting this into our equation gives: \[ \sec^2 \theta - 1 = \frac{2}{3} \sin \theta \] This simplifies to: \[ \sec^2 \theta = \frac{2}{3} \sin \theta + 1 \] ### Step 3: Express \(\sec^2 \theta\) in terms of \(\sin \theta\) Since \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\), we can write: \[ \frac{1}{\cos^2 \theta} = \frac{2}{3} \sin \theta + 1 \] Multiplying both sides by \(\cos^2 \theta\) gives: \[ 1 = \left(\frac{2}{3} \sin \theta + 1\right) \cos^2 \theta \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ \left(\frac{2}{3} \sin \theta + 1\right) \cos^2 \theta = 1 \] This can be rewritten as: \[ \cos^2 \theta = \frac{1}{\frac{2}{3} \sin \theta + 1} \] ### Step 5: Use the Pythagorean identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can express \(\cos^2 \theta\) in terms of \(\sin \theta\): \[ \cos^2 \theta = 1 - \sin^2 \theta \] Substituting this into the previous equation gives: \[ 1 - \sin^2 \theta = \frac{1}{\frac{2}{3} \sin \theta + 1} \] ### Step 6: Cross-multiply and simplify Cross-multiplying yields: \[ (1 - \sin^2 \theta)(\frac{2}{3} \sin \theta + 1) = 1 \] Expanding this gives: \[ \frac{2}{3} \sin \theta - \frac{2}{3} \sin^3 \theta + 1 - \sin^2 \theta = 1 \] Simplifying leads to: \[ \frac{2}{3} \sin \theta - \frac{2}{3} \sin^3 \theta - \sin^2 \theta = 0 \] Multiplying through by 3 to eliminate the fraction: \[ 2 \sin \theta - 2 \sin^3 \theta - 3 \sin^2 \theta = 0 \] ### Step 7: Factor out \(\sin \theta\) Factoring out \(\sin \theta\): \[ \sin \theta (2 - 2 \sin^2 \theta - 3 \sin \theta) = 0 \] This gives us two cases: 1. \(\sin \theta = 0\) 2. \(2 - 2 \sin^2 \theta - 3 \sin \theta = 0\) ### Step 8: Solve for \(\sin \theta = 0\) From \(\sin \theta = 0\): \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] ### Step 9: Solve the quadratic equation For the quadratic equation \(2 - 2 \sin^2 \theta - 3 \sin \theta = 0\), we can rearrange it to: \[ 2 \sin^2 \theta + 3 \sin \theta - 2 = 0 \] Using the quadratic formula: \[ \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] Calculating the discriminant: \[ = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} \] This gives: \[ \sin \theta = \frac{2}{4} = \frac{1}{2} \quad \text{or} \quad \sin \theta = \frac{-8}{4} = -2 \quad (\text{not possible}) \] ### Step 10: Find \(\theta\) for \(\sin \theta = \frac{1}{2}\) From \(\sin \theta = \frac{1}{2}\): \[ \theta = \frac{\pi}{6} + 2n\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + 2n\pi \] ### Final General Solution Combining all solutions, the general values of \(\theta\) are: \[ \theta = n\pi \quad (n \in \mathbb{Z}) \quad \text{and} \quad \theta = \frac{\pi}{6} + 2n\pi \quad \text{or} \quad \theta = \frac{5\pi}{6} + 2n\pi \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.2|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3P|32 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

If sqrt(3)costheta+sintheta=2 , then general value of theta is:

If sqrt(3)sintheta-costheta=0 , then one general value of theta is:

If tan3theta=cottheta , then general value of theta is :

Solve 3tan^(2) theta-2 sin theta=0 .

If sintheta+ costheta=1 , then find the general value of theta .

If theta in (0, 2pi) and 2sin^2theta - 5sintheta + 2 > 0 , then the range of theta is

Find the general value of theta 2 sin theta - 1 =0

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot

NAGEEN PRAKASHAN ENGLISH-TRIGNOMETRIC FUNCTIONS-EXERCISES 3Q
  1. If A=sin^(2)theta+cos^(4)theta, then find all real values of theta.

    Text Solution

    |

  2. Find the value of sqrt(3)cosec20^(@)-sec20^(@)

    Text Solution

    |

  3. If cosx=tany,cosy=tanz and cosz=tanx, then sin^2x=?

    Text Solution

    |

  4. 3(sintheta-costheta)^4+6(sintheta+costheta)^2+4(sin^6theta+cos^6theta)...

    Text Solution

    |

  5. If sinx+cosx=a, then (i) sin^(6)x+cos^(6)x=..... (ii) abs(sinx-...

    Text Solution

    |

  6. If cosA+cosB=mand sinA+ sinB=n wherem, n ne0, then sin(A+B) is equal t...

    Text Solution

    |

  7. The solution set of the equation 4 sin theta. Cos theta-2 cos theta-2s...

    Text Solution

    |

  8. Solutions of the equations (2cosx-1)(3cosx+4)=0 is [0,2pi] is:

    Text Solution

    |

  9. If (sin(theta+alpha))/(cos(theta-alpha))=(1-m)/(1+m) , prove that tan(...

    Text Solution

    |

  10. If 4sin^(4)x+cos^(4)x=1, then one general value is:

    Text Solution

    |

  11. If (2+sqrt(3))costheta=1-sintheta, then one general value is:

    Text Solution

    |

  12. The general solution of equation 3 tan(theta - 15^o) = tan(theta+15^o)...

    Text Solution

    |

  13. The solution of costheta.cos2theta.cos3theta=1/4,0 lt theta lt pi/4 is...

    Text Solution

    |

  14. If sectheta-1=(sqrt(2)-1)tantheta, then general value of theta is:

    Text Solution

    |

  15. If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

    Text Solution

    |

  16. The number of solutions of the equation sintheta+costheta=2 are:

    Text Solution

    |

  17. If sintheta-3sin2theta+sin3theta=costheta-3cos2theta+cos3theta, then o...

    Text Solution

    |

  18. If 3tan^(2)theta-2sintheta=0, then general value of theta is:

    Text Solution

    |

  19. If costheta+cos3theta+cos5theta+cos7theta=0, then general value of the...

    Text Solution

    |

  20. Maximum value of (3sintheta+4costheta) is:

    Text Solution

    |