Home
Class 11
MATHS
cot((-15pi)/4)...

`cot((-15pi)/4)`

Text Solution

AI Generated Solution

To find the value of \( \cot\left(-\frac{15\pi}{4}\right) \), we can follow these steps: ### Step 1: Simplify the angle First, we can simplify the angle \( -\frac{15\pi}{4} \) by adding \( 2\pi \) (which is equivalent to \( \frac{8\pi}{4} \)) repeatedly until the angle is within the range of \( [0, 2\pi) \). \[ -\frac{15\pi}{4} + 2\pi = -\frac{15\pi}{4} + \frac{8\pi}{4} = -\frac{7\pi}{4} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.3|25 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.4|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISES 3.1|7 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise|207 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cot^(-1)cot((5pi)/4)

The value of cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16) is (a) 4 (b) 2 (c) -2 (d) -4

Evaluate each of the following: cot^(-1)(cot((19pi)/6)) (ii) cot^(-1){cot(-(8pi)/3)} (iii) cot^(-1){cot((21pi)/4)}

Find the value of : cot^-1 (cot((5pi)/4))

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

The value of tan(-(15pi)/(4)) is

cos[tan^(-1){tan((15pi)/4)}]

Write the value of tan^(-1){tan((15pi)/4)}

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

Show that sin^(- 1)(sin((33pi)/7))+cos^(- 1)(cos((46pi)/7))+tan^-1(-tan((13pi)/8))+cot^-1(cot(-(19pi)/8))=(13pi)/7