Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `f(x) = sin x + cos 2x`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = \sin x + \cos 2x \), we will follow these steps: ### Step 1: Differentiate the function We start by finding the first derivative of the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(\sin x + \cos 2x) \] Using the derivatives of sine and cosine, we have: \[ f'(x) = \cos x - 2\sin 2x \] ### Step 2: Set the derivative to zero To find the critical points, we set the first derivative equal to zero: \[ \cos x - 2\sin 2x = 0 \] Using the identity \( \sin 2x = 2\sin x \cos x \), we can rewrite the equation: \[ \cos x - 4\sin x \cos x = 0 \] Factoring out \( \cos x \): \[ \cos x(1 - 4\sin x) = 0 \] ### Step 3: Solve for critical points This gives us two cases to consider: 1. \( \cos x = 0 \) 2. \( 1 - 4\sin x = 0 \) For \( \cos x = 0 \): \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] For \( 1 - 4\sin x = 0 \): \[ \sin x = \frac{1}{4} \] ### Step 4: Find the second derivative Next, we find the second derivative to determine the nature of the critical points: \[ f''(x) = -\sin x - 4\cos 2x \] ### Step 5: Evaluate critical points 1. **At \( x = \frac{\pi}{2} \)**: \[ f''\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) - 4\cos(\pi) = -1 + 4 = 3 \] Since \( f''\left(\frac{\pi}{2}\right) > 0 \), this point is a local minimum. Calculating \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \cos(\pi) = 1 - 1 = 0 \] 2. **At \( \sin x = \frac{1}{4} \)**: Let \( x = \sin^{-1}\left(\frac{1}{4}\right) \). We need to evaluate \( f''(x) \): Calculating \( f''(x) \): \[ f''(x) = -\sin\left(\sin^{-1}\left(\frac{1}{4}\right)\right) - 4\cos\left(2\sin^{-1}\left(\frac{1}{4}\right)\right) \] Using \( \sin\left(\sin^{-1}\left(\frac{1}{4}\right)\right) = \frac{1}{4} \) and \( \cos(2\theta) = 1 - 2\sin^2(\theta) \): \[ \cos\left(2\sin^{-1}\left(\frac{1}{4}\right)\right) = 1 - 2\left(\frac{1}{4}\right)^2 = 1 - 2 \cdot \frac{1}{16} = 1 - \frac{1}{8} = \frac{7}{8} \] Thus, \[ f''(x) = -\frac{1}{4} - 4 \cdot \frac{7}{8} = -\frac{1}{4} - \frac{28}{8} = -\frac{1}{4} - \frac{7}{2} = -\frac{1 + 14}{4} = -\frac{15}{4} \] Since \( f''(x) < 0 \), this point is a local maximum. Calculating \( f(x) \): \[ f\left(\sin^{-1}\left(\frac{1}{4}\right)\right) = \frac{1}{4} + \cos(2\sin^{-1}\left(\frac{1}{4}\right)) = \frac{1}{4} + \frac{7}{8} = \frac{2}{8} + \frac{7}{8} = \frac{9}{8} \] ### Conclusion The maximum value of the function is \( \frac{9}{8} \) and the minimum value is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6g|23 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6e|16 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

If x lies in first quadrant, find the maximum and minimum values of the function 4 sin x+3 cos x .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

Find the maximum and minimum values of the function f(x)=4/(x+2)+x .

Find the maximum value of the function f(x) =sin x + cos x .

Find a quadratic polynomial varphi(x) whose zeros are the maximum and minimum values of the function f(x)=|(1+sin^2x, cos^2x,sin2x) ,(sin^2x,1+cos^2x,sin2x), (sin^2x ,cos^2x,1+sin2x)|

Find a quadratic polynomial phi(x) whose zeros are the maximum and minimum values of the function: f(x)=|[1+sin^2x,cos^2x,sin2x],[sin^2x,1+cos^2x,sin2x],[sin^2x,cos^2x,1+sin2x]|

The difference between the maximum and minimum value of the function f(x)=3sin^4x-cos^6x is :

NAGEEN PRAKASHAN ENGLISH-APPLICATIONS OF DERIVATIVES-Exercise 6f
  1. Find the values of x for which the following functions are maximum or ...

    Text Solution

    |

  2. Find the maximum or minimum values of the following functions: (i)x^...

    Text Solution

    |

  3. For what values of x, the function f(x) = x^(5)-5x^(4)+5x^(3)-1 is max...

    Text Solution

    |

  4. Find the maximum and minimum values of the function f(x) = sin x + cos...

    Text Solution

    |

  5. Find the maximum and minimum values of the function f(x) = x+ sin 2x, ...

    Text Solution

    |

  6. Find the maximum and minimum values of the function f(x) = (sin x)/(1+...

    Text Solution

    |

  7. Show that s in^p\ theta\ cos^q\ theta attains a maximum, when theta...

    Text Solution

    |

  8. Find the maximum value of the function (log x)/x " when "x gt 0.

    Text Solution

    |

  9. Find the maximum value of the function x^(1//x).

    Text Solution

    |

  10. Show that the maximum value of (1/x)^x is e^(1/e)dot

    Text Solution

    |

  11. Show that the function x^(3)- 3x^(2)+3x+1 has neither a maxima nor a m...

    Text Solution

    |

  12. Show that f(x)=sinx(1+cosx) is maximum at x=pi/3 in the interval [0,\ ...

    Text Solution

    |

  13. If the function f(x) = x^(3)-24x^(2)+6kx-8 is maximum at x = 2 then fi...

    Text Solution

    |

  14. Prove that value of the function xy(y-x)=2a^3 is minimum at x=a.

    Text Solution

    |

  15. Show that the function(-x^(2) log x) is maximum at x= 1/sqrte.

    Text Solution

    |

  16. Find the maximum value of the function x * e^(-x).

    Text Solution

    |

  17. Show that the maximum value of the function sqrt2(sin x+ cos x) is 2.

    Text Solution

    |

  18. Show that the maximum and minimum values of the function (x+1)^2/(x+3)...

    Text Solution

    |

  19. If the function y = ae^(x) + bx^(2)+3x is maximum at x = 0 and minimum...

    Text Solution

    |