Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `f(x) = x+ sin 2x, (0 lt x lt pi)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = x + \sin(2x) \) in the interval \( (0, \pi) \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( f(x) \): \[ f'(x) = \frac{d}{dx}(x) + \frac{d}{dx}(\sin(2x)) = 1 + 2\cos(2x) \] ### Step 2: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ 1 + 2\cos(2x) = 0 \] This simplifies to: \[ 2\cos(2x) = -1 \quad \Rightarrow \quad \cos(2x) = -\frac{1}{2} \] ### Step 3: Solve for \( x \) The cosine function equals \(-\frac{1}{2}\) at specific angles: \[ 2x = \frac{2\pi}{3} + 2k\pi \quad \text{or} \quad 2x = \frac{4\pi}{3} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] Dividing by 2 gives us: \[ x = \frac{\pi}{3} + k\pi \quad \text{or} \quad x = \frac{2\pi}{3} + k\pi \] Considering the interval \( (0, \pi) \), we take: \[ x = \frac{\pi}{3} \quad \text{and} \quad x = \frac{2\pi}{3} \] ### Step 4: Evaluate the second derivative To determine whether these critical points are maxima or minima, we find the second derivative: \[ f''(x) = \frac{d}{dx}(f'(x)) = \frac{d}{dx}(1 + 2\cos(2x)) = -4\sin(2x) \] ### Step 5: Test the critical points 1. For \( x = \frac{\pi}{3} \): \[ f''\left(\frac{\pi}{3}\right) = -4\sin\left(2 \cdot \frac{\pi}{3}\right) = -4\sin\left(\frac{2\pi}{3}\right) = -4 \cdot \frac{\sqrt{3}}{2} = -2\sqrt{3} < 0 \] This indicates a local maximum. 2. For \( x = \frac{2\pi}{3} \): \[ f''\left(\frac{2\pi}{3}\right) = -4\sin\left(2 \cdot \frac{2\pi}{3}\right) = -4\sin\left(\frac{4\pi}{3}\right) = -4 \cdot \left(-\frac{\sqrt{3}}{2}\right) = 2\sqrt{3} > 0 \] This indicates a local minimum. ### Step 6: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical points and the endpoints of the interval: 1. At \( x = \frac{\pi}{3} \): \[ f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} + \sin\left(\frac{2\pi}{3}\right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2} \] 2. At \( x = \frac{2\pi}{3} \): \[ f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + \sin\left(\frac{4\pi}{3}\right) = \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \] 3. At the endpoints \( x = 0 \) and \( x = \pi \): \[ f(0) = 0 + \sin(0) = 0 \] \[ f(\pi) = \pi + \sin(2\pi) = \pi \] ### Step 7: Compare values Now we compare the values: - \( f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2} \) - \( f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \) - \( f(0) = 0 \) - \( f(\pi) = \pi \) ### Conclusion The maximum value occurs at \( x = \frac{\pi}{3} \) and the minimum value occurs at \( x = \frac{2\pi}{3} \). ### Final Answer - Maximum value: \( f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} + \frac{\sqrt{3}}{2} \) - Minimum value: \( f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6g|23 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6e|16 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

The difference between the maximum and minimum values of the function f(x)=sin^(3)x-3sinx, AA x in [0,(pi)/(6)] is

Find the maximum value of the function f(x) =sin x + cos x .

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,pi]

Find the maximum and the minimum values, if any, of the function given by f(x)=x ,x in (0,1)

Find the maximum and the minimum values, if any, of the function f given by f(x)=x^2,x in R .

NAGEEN PRAKASHAN ENGLISH-APPLICATIONS OF DERIVATIVES-Exercise 6f
  1. Find the values of x for which the following functions are maximum or ...

    Text Solution

    |

  2. Find the maximum or minimum values of the following functions: (i)x^...

    Text Solution

    |

  3. For what values of x, the function f(x) = x^(5)-5x^(4)+5x^(3)-1 is max...

    Text Solution

    |

  4. Find the maximum and minimum values of the function f(x) = sin x + cos...

    Text Solution

    |

  5. Find the maximum and minimum values of the function f(x) = x+ sin 2x, ...

    Text Solution

    |

  6. Find the maximum and minimum values of the function f(x) = (sin x)/(1+...

    Text Solution

    |

  7. Show that s in^p\ theta\ cos^q\ theta attains a maximum, when theta...

    Text Solution

    |

  8. Find the maximum value of the function (log x)/x " when "x gt 0.

    Text Solution

    |

  9. Find the maximum value of the function x^(1//x).

    Text Solution

    |

  10. Show that the maximum value of (1/x)^x is e^(1/e)dot

    Text Solution

    |

  11. Show that the function x^(3)- 3x^(2)+3x+1 has neither a maxima nor a m...

    Text Solution

    |

  12. Show that f(x)=sinx(1+cosx) is maximum at x=pi/3 in the interval [0,\ ...

    Text Solution

    |

  13. If the function f(x) = x^(3)-24x^(2)+6kx-8 is maximum at x = 2 then fi...

    Text Solution

    |

  14. Prove that value of the function xy(y-x)=2a^3 is minimum at x=a.

    Text Solution

    |

  15. Show that the function(-x^(2) log x) is maximum at x= 1/sqrte.

    Text Solution

    |

  16. Find the maximum value of the function x * e^(-x).

    Text Solution

    |

  17. Show that the maximum value of the function sqrt2(sin x+ cos x) is 2.

    Text Solution

    |

  18. Show that the maximum and minimum values of the function (x+1)^2/(x+3)...

    Text Solution

    |

  19. If the function y = ae^(x) + bx^(2)+3x is maximum at x = 0 and minimum...

    Text Solution

    |