Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = \frac{\sin x}{1 + \tan x} \) in the interval \( (0, 2\pi) \), we will follow these steps: ### Step 1: Differentiate the function We will use the quotient rule for differentiation. The quotient rule states that if you have a function \( \frac{u}{v} \), then its derivative is given by: \[ f'(x) = \frac{u'v - uv'}{v^2} \] For our function, let: - \( u = \sin x \) and \( u' = \cos x \) - \( v = 1 + \tan x \) and \( v' = \sec^2 x \) Thus, we have: \[ f'(x) = \frac{\cos x (1 + \tan x) - \sin x \sec^2 x}{(1 + \tan x)^2} \] ### Step 2: Set the derivative equal to zero To find the critical points, we set the numerator equal to zero: \[ \cos x (1 + \tan x) - \sin x \sec^2 x = 0 \] This simplifies to: \[ \cos x + \sin x - \sin x = 0 \] So we have: \[ \cos x = 0 \] ### Step 3: Solve for critical points The solutions to \( \cos x = 0 \) in the interval \( (0, 2\pi) \) are: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] ### Step 4: Evaluate the function at critical points and endpoints Next, we evaluate \( f(x) \) at the critical points and also check the endpoints of the interval \( (0, 2\pi) \): 1. **At \( x = \frac{\pi}{2} \)**: \[ f\left(\frac{\pi}{2}\right) = \frac{\sin\left(\frac{\pi}{2}\right)}{1 + \tan\left(\frac{\pi}{2}\right)} = \frac{1}{1 + \infty} = 0 \] 2. **At \( x = \frac{3\pi}{2} \)**: \[ f\left(\frac{3\pi}{2}\right) = \frac{\sin\left(\frac{3\pi}{2}\right)}{1 + \tan\left(\frac{3\pi}{2}\right)} = \frac{-1}{1 + \infty} = 0 \] 3. **At \( x = 0 \)**: \[ f(0) = \frac{\sin(0)}{1 + \tan(0)} = \frac{0}{1} = 0 \] 4. **At \( x = 2\pi \)**: \[ f(2\pi) = \frac{\sin(2\pi)}{1 + \tan(2\pi)} = \frac{0}{1} = 0 \] ### Step 5: Check values in between the critical points To find the maximum and minimum values, we can also check values between the critical points, such as \( x = \frac{\pi}{4} \) and \( x = \frac{5\pi}{4} \): 1. **At \( x = \frac{\pi}{4} \)**: \[ f\left(\frac{\pi}{4}\right) = \frac{\sin\left(\frac{\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{4}\right)} = \frac{\frac{\sqrt{2}}{2}}{1 + 1} = \frac{\frac{\sqrt{2}}{2}}{2} = \frac{\sqrt{2}}{4} \] 2. **At \( x = \frac{5\pi}{4} \)**: \[ f\left(\frac{5\pi}{4}\right) = \frac{\sin\left(\frac{5\pi}{4}\right)}{1 + \tan\left(\frac{5\pi}{4}\right)} = \frac{-\frac{\sqrt{2}}{2}}{1 - 1} = \text{undefined} \] ### Conclusion The maximum value of \( f(x) \) occurs at \( x = \frac{\pi}{4} \) with \( f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{4} \), and the minimum value occurs at \( x = \frac{3\pi}{2} \) and \( x = \frac{\pi}{2} \) with \( f\left(\frac{3\pi}{2}\right) = 0 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6g|23 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6e|16 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tanx-2x .

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Find the maximum and the minimum values, if any, of the function given by f(x)=x ,x in (0,1)

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,\ 2pi]

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,pi]

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .

The maximum value of the function of (log_(e) x)/(x) in 0 lt x lt oo is at

NAGEEN PRAKASHAN ENGLISH-APPLICATIONS OF DERIVATIVES-Exercise 6f
  1. Find the values of x for which the following functions are maximum or ...

    Text Solution

    |

  2. Find the maximum or minimum values of the following functions: (i)x^...

    Text Solution

    |

  3. For what values of x, the function f(x) = x^(5)-5x^(4)+5x^(3)-1 is max...

    Text Solution

    |

  4. Find the maximum and minimum values of the function f(x) = sin x + cos...

    Text Solution

    |

  5. Find the maximum and minimum values of the function f(x) = x+ sin 2x, ...

    Text Solution

    |

  6. Find the maximum and minimum values of the function f(x) = (sin x)/(1+...

    Text Solution

    |

  7. Show that s in^p\ theta\ cos^q\ theta attains a maximum, when theta...

    Text Solution

    |

  8. Find the maximum value of the function (log x)/x " when "x gt 0.

    Text Solution

    |

  9. Find the maximum value of the function x^(1//x).

    Text Solution

    |

  10. Show that the maximum value of (1/x)^x is e^(1/e)dot

    Text Solution

    |

  11. Show that the function x^(3)- 3x^(2)+3x+1 has neither a maxima nor a m...

    Text Solution

    |

  12. Show that f(x)=sinx(1+cosx) is maximum at x=pi/3 in the interval [0,\ ...

    Text Solution

    |

  13. If the function f(x) = x^(3)-24x^(2)+6kx-8 is maximum at x = 2 then fi...

    Text Solution

    |

  14. Prove that value of the function xy(y-x)=2a^3 is minimum at x=a.

    Text Solution

    |

  15. Show that the function(-x^(2) log x) is maximum at x= 1/sqrte.

    Text Solution

    |

  16. Find the maximum value of the function x * e^(-x).

    Text Solution

    |

  17. Show that the maximum value of the function sqrt2(sin x+ cos x) is 2.

    Text Solution

    |

  18. Show that the maximum and minimum values of the function (x+1)^2/(x+3)...

    Text Solution

    |

  19. If the function y = ae^(x) + bx^(2)+3x is maximum at x = 0 and minimum...

    Text Solution

    |