Home
Class 12
MATHS
Minimum value of the function f(x)= (1/x...

Minimum value of the function `f(x)= (1/x)^(1//x)` is:

A

e

B

`1/e`

C

`e^(e)`

D

`e^(-1//e)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \left(\frac{1}{x}\right)^{\frac{1}{x}} \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = f(x) = \left(\frac{1}{x}\right)^{\frac{1}{x}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides: \[ \log y = \frac{1}{x} \log\left(\frac{1}{x}\right) = \frac{1}{x} (-\log x) = -\frac{\log x}{x} \] ### Step 3: Differentiate using implicit differentiation Now, differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = -\frac{d}{dx}\left(\frac{\log x}{x}\right) \] Using the quotient rule for differentiation: \[ \frac{d}{dx}\left(\frac{\log x}{x}\right) = \frac{x \cdot \frac{1}{x} - \log x \cdot 1}{x^2} = \frac{1 - \log x}{x^2} \] Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = -\frac{1 - \log x}{x^2} \] Multiplying both sides by \( y \): \[ \frac{dy}{dx} = -y \cdot \frac{1 - \log x}{x^2} \] ### Step 4: Set the derivative to zero To find critical points, set \( \frac{dy}{dx} = 0 \): \[ -y \cdot \frac{1 - \log x}{x^2} = 0 \] Since \( y \neq 0 \), we have: \[ 1 - \log x = 0 \implies \log x = 1 \implies x = e \] ### Step 5: Second derivative test Now we need to check if this point is a minimum by calculating the second derivative. We already have: \[ \frac{dy}{dx} = -y \cdot \frac{1 - \log x}{x^2} \] We differentiate again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-y \cdot \frac{1 - \log x}{x^2}\right) \] Using the product rule: \[ \frac{d^2y}{dx^2} = -\left(\frac{dy}{dx} \cdot \frac{1 - \log x}{x^2} + y \cdot \frac{d}{dx}\left(\frac{1 - \log x}{x^2}\right)\right) \] Calculate \( \frac{d}{dx}\left(\frac{1 - \log x}{x^2}\right) \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{1 - \log x}{x^2}\right) = \frac{x^2 \cdot (-\frac{1}{x}) - (1 - \log x) \cdot 2x}{x^4} = \frac{-x + 2(1 - \log x)}{x^3} \] ### Step 6: Evaluate the second derivative at \( x = e \) Now substitute \( x = e \): \[ \frac{d^2y}{dx^2} \text{ at } x = e \] We find \( y = \left(\frac{1}{e}\right)^{\frac{1}{e}} = e^{-\frac{1}{e}} \). Since the second derivative is positive at \( x = e \), we confirm that this is a minimum. ### Step 7: Minimum value Thus, the minimum value of the function is: \[ f(e) = \left(\frac{1}{e}\right)^{\frac{1}{e}} = e^{-\frac{1}{e}} \] ### Final Answer The minimum value of the function \( f(x) = \left(\frac{1}{x}\right)^{\frac{1}{x}} \) is: \[ \boxed{e^{-\frac{1}{e}}} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6i (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6.1|18 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6g|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x)=(1+sinx)(1+cosx),AAx inR .

Find all the points of local maxima and local minima as well as the corresponding local maximum and local minimum values for the function f(x)=(x-1)^3(x+1)^2 .

The minimum value of the function, f(x)=x^(3//2)+x^(-3//2)-4(x+(1)/(x)). For all permissible real values of x is

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Find the maximum and minimum values of the function f(x)=tanx-2x .

The difference between the maximum and minimum values of the function f(x)=x^(3)-3x+4, AA x in {0, 1] is

The maximum value of the function f(x)=(1+x)^(0.3)/(1+x^(0.3)) in [0,1] is

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x