Home
Class 12
MATHS
If the function f(x) = a sin x + 1/3 sin...

If the function `f(x) = a sin x + 1/3 sin 3x ` is maximum at `x= pi/3 ` a=?

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the function \( f(x) = a \sin x + \frac{1}{3} \sin 3x \) has a maximum at \( x = \frac{\pi}{3} \). ### Step 1: Differentiate the function First, we need to find the derivative of the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(a \sin x + \frac{1}{3} \sin 3x) \] Using the derivative rules, we have: \[ f'(x) = a \cos x + \frac{1}{3} \cdot 3 \cos 3x \] This simplifies to: \[ f'(x) = a \cos x + \cos 3x \] ### Step 2: Set the derivative to zero at \( x = \frac{\pi}{3} \) Since the function is maximum at \( x = \frac{\pi}{3} \), we set the derivative equal to zero at this point: \[ f'\left(\frac{\pi}{3}\right) = 0 \] Substituting \( x = \frac{\pi}{3} \): \[ a \cos\left(\frac{\pi}{3}\right) + \cos\left(3 \cdot \frac{\pi}{3}\right) = 0 \] ### Step 3: Calculate the cosine values We know: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] \[ \cos(\pi) = -1 \] Substituting these values into the equation gives: \[ a \cdot \frac{1}{2} + (-1) = 0 \] ### Step 4: Solve for \( a \) Now, we can solve for \( a \): \[ \frac{a}{2} - 1 = 0 \] Adding 1 to both sides: \[ \frac{a}{2} = 1 \] Multiplying both sides by 2: \[ a = 2 \] ### Conclusion Thus, the value of \( a \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6.1|18 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6.2|19 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6h (multiple Choice Questions)|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) = (1)/(2-sin 3x) is

The period of the function f(x)=|sin 3x|+| cos 3x| , is

The range of the function f(x)=3|sin x|-2|cos x| is :

The minimum value of the function f(x)=(3 sin x - 4 cos x - 10)(3 sin x + 4 cos x-10) , is

The function f(x) = 4 sin^(3) x - 6 sin^(2) x + 12 sin x + 100 is strictly

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

At x = (5 pi)/( 6) , the function f (x) = 2 sin 3 x + 3 cos 3 x is

Show that f(x)=sin x(1+cosx) is maximum at x=pi/3 in the interval [0,pi]dot

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :