Home
Class 12
MATHS
int " log"(e) " x dx "...

`int " log"_(e) " x dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log_e x \, dx \), we can use integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step-by-Step Solution: 1. **Choose \( u \) and \( dv \)**: Let: \[ u = \log_e x \quad \text{and} \quad dv = dx \] 2. **Differentiate \( u \) and integrate \( dv \)**: Now, we differentiate \( u \) and integrate \( dv \): \[ du = \frac{1}{x} \, dx \quad \text{and} \quad v = x \] 3. **Apply the integration by parts formula**: Substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int \log_e x \, dx = x \log_e x - \int x \cdot \frac{1}{x} \, dx \] 4. **Simplify the integral**: The integral simplifies as follows: \[ \int x \cdot \frac{1}{x} \, dx = \int 1 \, dx = x \] 5. **Combine the results**: Now substitute back into the equation: \[ \int \log_e x \, dx = x \log_e x - x + C \] where \( C \) is the constant of integration. 6. **Factor out \( x \)**: To make the expression neater, we can factor out \( x \): \[ \int \log_e x \, dx = x \left( \log_e x - 1 \right) + C \] ### Final Answer: \[ \int \log_e x \, dx = x \left( \log_e x - 1 \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7i|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int log_(e)(a^(x))dx=

Evaluate int x log x dx .

int (1+log_e x)/x dx

Evaluate int 5^(log _(e)x)dx

int log ( 1 + x^(2)) dx

int cos (log_e x)dx is equal to

Evaluate : int (e^("log x "))/(x) " dx "

The value of the integral underset(e^(-1))overset(e^(2))int |(log_(e)x)/(x)|dx is

int_(1)^(4) log_(e)[x]dx equals

Given overset(2)underset(1)inte^(x^(2))dx=a , the value of overset(e^(4))underset(e )int sqrt(log_(e )x)dx , is