Home
Class 12
MATHS
int(sec^(2)x)/(sqrt(tanx))dx...

`int(sec^(2)x)/(sqrt(tanx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx\), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx \] ### Step 2: Use substitution We will substitute \( t = \tan x \). Then, we differentiate both sides: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dt = \sec^2 x \, dx \] This means we can replace \( \sec^2 x \, dx \) with \( dt \). ### Step 3: Substitute in the integral Now, substituting \( t \) into the integral, we have: \[ I = \int \frac{1}{\sqrt{t}} \, dt \] ### Step 4: Rewrite the integral The integral can be rewritten as: \[ I = \int t^{-\frac{1}{2}} \, dt \] ### Step 5: Integrate Using the power rule for integration, we find: \[ I = \frac{t^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} + C = \frac{t^{\frac{1}{2}}}{\frac{1}{2}} + C = 2\sqrt{t} + C \] ### Step 6: Substitute back Now, we substitute back \( t = \tan x \): \[ I = 2\sqrt{\tan x} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sec^2 x}{\sqrt{\tan x}} \, dx = 2\sqrt{\tan x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sec^2x)/(sqrt(tan^2x+4))dx

Evaluate: int(sec^2x)/(sqrt(tan^2x+4))dx

Evaluate: int(sec^4x)/(sqrt(tanx))\ dx

evaluate int(sec^2x)/sqrt(16+tan^2x)dx

Evaluate: int(sec^(2)x)/(1+tanx)dx

Evaluate: (i) int(sec^2x)/(sqrt(16+tan^2x))\ dx (ii) int1/(x\ sqrt((logx)^2-5))\ dx

Evaluate: int(sec^2x)/(sqrt(4+tan^2x))\ dx

Evaluate: int(sec^2sqrt(x))/(sqrt(x))dx

solve int (sec^2x)/((1+tanx)^3) dx

Evaluate: int(sec^2x)/(tanx+2)dx