Home
Class 12
MATHS
(i) int(1)/((1+x^(2))tan ^(-1) x )dx " ...

` (i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): Evaluate \( I_1 = \int \frac{1}{(1+x^2) \tan^{-1} x} \, dx \) 1. **Substitution**: Let \( t = \tan^{-1} x \). - Then, differentiate both sides: \[ \frac{dt}{dx} = \frac{1}{1+x^2} \implies dx = (1+x^2) dt \] - Substitute \( dx \) and \( \tan^{-1} x \) in the integral: \[ I_1 = \int \frac{1}{(1+x^2) t} (1+x^2) dt = \int \frac{1}{t} dt \] 2. **Integrate**: - The integral of \( \frac{1}{t} \) is: \[ I_1 = \ln |t| + C \] 3. **Back-substitution**: - Replace \( t \) with \( \tan^{-1} x \): \[ I_1 = \ln |\tan^{-1} x| + C \] ### Final Result for Part (i): \[ I_1 = \ln |\tan^{-1} x| + C \] --- ### Part (ii): Evaluate \( I_2 = \int \frac{e^{\tan^{-1} x}}{1+x^2} \, dx \) 1. **Substitution**: Again, let \( t = \tan^{-1} x \). - As before, we have: \[ dx = (1+x^2) dt \] - Substitute \( dx \) and \( \tan^{-1} x \) in the integral: \[ I_2 = \int e^t \cdot dt \] 2. **Integrate**: - The integral of \( e^t \) is: \[ I_2 = e^t + C_1 \] 3. **Back-substitution**: - Replace \( t \) with \( \tan^{-1} x \): \[ I_2 = e^{\tan^{-1} x} + C_1 \] ### Final Result for Part (ii): \[ I_2 = e^{\tan^{-1} x} + C_1 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(i) int(1)/(sqrt(1-x^(2)).cos^(-1) x)dx (ii) int (sin(tan^(-1)x))/(1+x^(2))dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

int (tan^(-1)x)dx

Evaluate int (e^(m tan^(-1)x))/(1+x^(2))dx

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

int _(0)^(1) (tan ^(-1)x)/(x ) dx =