Home
Class 12
MATHS
int(e^(x)+cos x)/(e^(x) +sin x) dx...

`int(e^(x)+cos x)/(e^(x) +sin x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{e^x + \cos x}{e^x + \sin x} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \[ I = \int \frac{e^x + \cos x}{e^x + \sin x} \, dx \] ### Step 2: Use substitution We notice that the derivative of the denominator \( e^x + \sin x \) resembles the numerator. Thus, we can use the substitution: \[ t = e^x + \sin x \] Now, differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = e^x + \cos x \] This implies: \[ dt = (e^x + \cos x) \, dx \] ### Step 3: Rewrite the integral Now we can rewrite the integral in terms of \( t \): \[ I = \int \frac{dt}{t} \] ### Step 4: Integrate The integral \( \int \frac{dt}{t} \) is a standard integral: \[ I = \ln |t| + C \] where \( C \) is the constant of integration. ### Step 5: Substitute back Now, we substitute back \( t = e^x + \sin x \): \[ I = \ln |e^x + \sin x| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{e^x + \cos x}{e^x + \sin x} \, dx = \ln |e^x + \sin x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int e^(x) sin x dx .

int(sin x+x cos x)/(x sin x)dx

int e^(x)(sin x-cos x)/(sin^(2)x)dx

int(e^(x)sin x+cos x+x sin x)/(sinx)dx

int (e^(x))/(e^(x) + e^(-x))dx

int e^(3x) " cos 2x dx "

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

Evaluate: int e^(x) (1 + sin x)/(1 + cos x)dx

int (e^x +2x)/(e^x+x^2) dx

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx