Home
Class 12
MATHS
(i) int(sec x* cosec x)/(log cot x) dx ...

(i) `int(sec x* cosec x)/(log cot x) dx` (ii) `int tan^(4) x\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): \(\int \frac{\sec x \cdot \csc x}{\log \cot x} \, dx\) **Step 1: Substitution** Let \( t = \log \cot x \). **Hint:** Remember that the logarithm of a quotient can be simplified using properties of logarithms. **Step 2: Differentiate \( t \)** Now, differentiate both sides with respect to \( x \): \[ dt = \frac{d}{dx}(\log \cot x) = \frac{1}{\cot x} \cdot \frac{d}{dx}(\cot x) = \frac{1}{\cot x} \cdot (-\csc^2 x) \, dx \] This simplifies to: \[ dt = -\frac{\csc^2 x}{\cot x} \, dx = -\frac{1}{\sin x \cos x} \, dx \] **Hint:** Use the definitions of sine and cosine to rewrite cotangent and cosecant. **Step 3: Rewrite in terms of \( t \)** Rearranging gives: \[ dx = -\cot x \cdot \sin^2 x \, dt \] Now, substitute \( \sec x \) and \( \csc x \): \[ \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x} \] Thus, we have: \[ \sec x \cdot \csc x = \frac{1}{\sin x \cos x} \] **Step 4: Substitute back into the integral** Substituting into the integral: \[ \int \frac{\sec x \cdot \csc x}{\log \cot x} \, dx = \int \frac{1}{\sin x \cos x} \cdot -\cot x \cdot \sin^2 x \, dt \] This simplifies to: \[ -\int \frac{\sin x}{\cos x \log \cot x} \, dt = -\int \frac{1}{\log \cot x} \, dt \] **Step 5: Integrate** The integral becomes: \[ -\int \frac{1}{t} \, dt = -\log |t| + C \] Substituting back \( t = \log \cot x \): \[ -\log |\log \cot x| + C \] ### Final Answer for Part (i): \[ -\log |\log \cot x| + C \] --- ### Part (ii): \(\int \tan^4 x \, dx\) **Step 1: Rewrite \(\tan^4 x\)** We can express \(\tan^4 x\) as: \[ \tan^4 x = (\tan^2 x)^2 = \sec^2 x - 1 \] **Hint:** Use the identity \(\tan^2 x = \sec^2 x - 1\). **Step 2: Substitute** Thus, we can rewrite the integral: \[ \int \tan^4 x \, dx = \int (\sec^2 x - 1)^2 \, dx \] **Step 3: Expand the integrand** Expanding gives: \[ \int (\sec^4 x - 2\sec^2 x + 1) \, dx \] **Step 4: Separate the integrals** Now we can separate the integrals: \[ \int \sec^4 x \, dx - 2\int \sec^2 x \, dx + \int 1 \, dx \] **Step 5: Integrate each part** 1. \(\int \sec^2 x \, dx = \tan x + C\) 2. \(\int 1 \, dx = x + C\) 3. For \(\int \sec^4 x \, dx\), we can use the identity: \[ \sec^4 x = \tan^2 x + 1 \] Thus: \[ \int \sec^4 x \, dx = \tan x + \int \sec^2 x \, dx = \tan x + \tan x = 2\tan x \] **Step 6: Combine results** Putting it all together: \[ \int \tan^4 x \, dx = 2\tan x - 2\tan x + x + C = x + C \] ### Final Answer for Part (ii): \[ x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int1/(sec x + cosec x) dx

int1/(sec x + cosec x) dx

2. int(sec x + cosec x ) dx

int(secx- tan x)/(sec x+ tan x) dx

int (dx)/(sec x + "cosec x")

int secx. log (sec x+ tan x ) dx

int (sec^2x)/(cosec^2x) dx

Evaluate: int("cosec x")/(log tan(x/2)) dx

int (1 + tan x )/ (x + log sec x)dx

2. int(tan x)/(log sec x)dx