Home
Class 12
MATHS
int(cos x)/(1+sinx) dx...

`int(cos x)/(1+sinx) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos x}{1 + \sin x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + \sin x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = \cos x \implies dt = \cos x \, dx \] This means we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{\cos x} \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we have: \[ \int \frac{\cos x}{1 + \sin x} \, dx = \int \frac{\cos x}{t} \cdot \frac{dt}{\cos x} \] The \( \cos x \) terms cancel out: \[ = \int \frac{dt}{t} \] ### Step 3: Integrate The integral \( \int \frac{dt}{t} \) is a standard integral: \[ = \log |t| + C \] ### Step 4: Substitute Back Now, substitute back \( t = 1 + \sin x \): \[ = \log |1 + \sin x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\cos x}{1 + \sin x} \, dx = \log |1 + \sin x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(cos^7x)/(sinx)\ dx

Evaluate: int(cos^9x)/(sinx)\ dx

Evaluate: int(cos^5x)/(sinx)\ dx

Evaluate: int(cos^5x)/(sinx)dx

int(sinx)/(1+sin x) dx

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

int((1+cosx))/(x+sinx)dx