Home
Class 12
MATHS
Evaluate: int(sinx)/(sin(x-a))\ dx...

Evaluate: `int(sinx)/(sin(x-a))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{\sin x}{\sin(x-a)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Numerator We can express the numerator \(\sin x\) in terms of \(\sin(x-a)\): \[ \sin x = \sin((x-a) + a) = \sin(x-a)\cos a + \cos(x-a)\sin a \] Thus, we rewrite the integral as: \[ I = \int \frac{\sin((x-a) + a)}{\sin(x-a)} \, dx = \int \frac{\sin(x-a)\cos a + \cos(x-a)\sin a}{\sin(x-a)} \, dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \int \cos a \, dx + \int \frac{\cos(x-a)\sin a}{\sin(x-a)} \, dx \] This simplifies to: \[ I = \cos a \int dx + \sin a \int \cot(x-a) \, dx \] ### Step 3: Integrate Each Part 1. The first integral: \[ \int dx = x \] So, the first part becomes: \[ \cos a \cdot x \] 2. The second integral: Using the formula for the integral of \(\cot\): \[ \int \cot u \, du = \log|\sin u| + C \] Here, \(u = x - a\), thus: \[ \int \cot(x-a) \, dx = \log|\sin(x-a)| + C \] So, the second part becomes: \[ \sin a \log|\sin(x-a)| \] ### Step 4: Combine the Results Combining both parts, we get: \[ I = \cos a \cdot x + \sin a \log|\sin(x-a)| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sin x}{\sin(x-a)} \, dx = x \cos a + \sin a \log|\sin(x-a)| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(2+sin2x)dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate: int(sinx)/(1+sinx)\ dx

Evaluate : int(sinx+cosx)/(sin(x-a))dx